Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neuronarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuron
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuron
Article . 2005
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuron
Article . 2005 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Neuron
Article . 2005
versions View all 5 versions

Open-Channel Block by the Cytoplasmic Tail of Sodium Channel β4 as a Mechanism for Resurgent Sodium Current

Authors: Grieco, Tina M.; Malhotra, Jyoti D.; Chen, Chunling; Isom, Lori L.; Raman, Indira M.;

Open-Channel Block by the Cytoplasmic Tail of Sodium Channel β4 as a Mechanism for Resurgent Sodium Current

Abstract

Voltage-gated sodium channels with "resurgent" kinetics are specialized for high-frequency firing. The α subunits interact with a blocking protein that binds open channels upon depolarization and unbinds upon repolarization, producing resurgent sodium current. By limiting classical inactivation, the cycle of block and unblock shortens refractory periods. To characterize the blocker in Purkinje neurons, we briefly exposed inside-out patches to substrate-specific proteases. Trypsin and chymotrypsin each removed resurgent current, consistent with established roles for positively charged and hydrophobic/aromatic groups in blocking sodium channels. In Purkinje cells, the only known sodium channel-associated subunit that has a cytoplasmic sequence with several positive charges and clustered hydrophobic/aromatic residues is β4 (KKLITFILKKTREK; β4154-167). After enzymatic removal of block, β4154-167 fully reconstituted resurgent current, whereas scrambled or point-mutated peptides were ineffective. In CA3 pyramidal neurons, which lack β4 and endogenous block, β4154-167 generated resurgent current. Thus, β4 may be the endogenous open-channel blocker responsible for resurgent kinetics.

Keywords

Mice, Knockout, Patch-Clamp Techniques, Voltage-Gated Sodium Channel beta-4 Subunit, Neuroscience(all), Pyramidal Cells, Cell Membrane, Hippocampus, Sodium Channels, Protein Structure, Tertiary, Mice, Inbred C57BL, Mice, Protein Subunits, Purkinje Cells, Mutation, Animals, Peptides, Ion Channel Gating, Peptide Hydrolases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    218
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
218
Top 10%
Top 10%
Top 1%
hybrid