Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neuroscience Researc...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuroscience Research
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Rac is involved in the interkinetic nuclear migration of cortical progenitor cells

Authors: Tomoko Ohdachi; Rieko Kanda; Takaki Miyata; Akira Sakakibara; Miyako Kimura; Takeshi Kawauchi; Sayaka Minobe; +6 Authors

Rac is involved in the interkinetic nuclear migration of cortical progenitor cells

Abstract

The small GTPase Rac regulates neuronal behavior, but whether it also functions in neural progenitor cells has not yet been explored. Here we report that Rac contributes to the regulation of nuclear migration in neocortical progenitor cells. Rac1 is expressed by progenitor cells in a unique spatiotemporal pattern. Cross-sectional immunohistochemical examination revealed intense Rac1 immunoreactivity at the ventricular surface. Similar staining patterns were obtained by immunofluorescence for a Rac-activator, Tiam1, and by reactions to detect the GTP-bound (active) form of Rac. En face inspection of the ventricular surface revealed that apical Rac1 localization was most frequent in M-phase cells, and the endfeet of cells in other cell cycle phases also showed apical Rac1 distribution at lower frequencies. To ask whether progenitor cell behavior prior to and during M phase is Rac-dependent, we monitored individual DiI-labeled progenitor cells live in the presence of a Rac inhibitor, NSC23766. We observed significantly retarded adventricular nuclear migration, as well as cytokinesis failures. Similar inhibitory effects were obtained by forced expression of a dominant-negative Rac1. These results suggest that Rac may play a role in interkinetic nuclear migration in the developing mouse brain.

Keywords

Cerebral Cortex, Neurons, Mice, Inbred ICR, Neurogenesis, Cell Cycle, Green Fluorescent Proteins, Age Factors, Gene Expression Regulation, Developmental, Embryo, Mammalian, Cerebral Ventricles, Mice, Electroporation, Organ Culture Techniques, Cell Movement, Pregnancy, Aminoquinolines, Animals, Guanine Nucleotide Exchange Factors, Female, Amino Acids

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Average
Top 10%
Top 10%