Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neurobiology of Dise...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neurobiology of Disease
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neurobiology of Disease
Article . 2008
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions

Localization and regional distribution of p23/TMP21 in the brain

Authors: Kulandaivelu S. Vetrivel; Ying Chen; Ping Gong; Angèle T. Parent; Satyabrata Kar; Gopal Thinakaran; A. Kodam;

Localization and regional distribution of p23/TMP21 in the brain

Abstract

Sequential processing of amyloid precursor protein by beta- and gamma-secretases generates Alzheimer's disease (AD)-associated beta-amyloid peptides. Recently it was reported that the transmembrane protein p23/TMP21 associates with gamma-secretase, and negatively regulates beta-amyloid production. Despite the link between p23 function and AD pathogenesis, the expression of p23 has not been examined in the brain. Here, we describe the detailed immunohistochemical characterization of p23 expression in rodent and human brain. We report that p23 is co-expressed with gamma-secretase subunits in select neuronal cell populations in rodent brain. Interestingly, the steady-state level of p23 in the brain is high during embryonic development and then declines after birth. Furthermore, the steady-state p23 levels are reduced in the brains of individuals with AD. We conclude that p23 is expressed in neurons throughout the brain and the decline in p23 expression during postnatal development may significantly contribute to enhanced beta-amyloid production in the adult brain.

Related Organizations
Keywords

Adult, Male, Nucleocytoplasmic Transport Proteins, Neurosciences. Biological psychiatry. Neuropsychiatry, γ-secretase, Hippocampus, Presenilin, Mice, Alzheimer Disease, Cell Line, Tumor, Cerebellum, Animals, Humans, Cells, Cultured, Aged, Aged, 80 and over, Brain Chemistry, COP I, Membrane Proteins, Alzheimer's disease, Middle Aged, Frontal Lobe, Rats, Animals, Newborn, Kainic acid, RC321-571, HeLa Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Average
Average
gold