S1P1 overexpression stimulates S1P-dependent chemotaxis of human CD34+ hematopoietic progenitor cells but strongly inhibits SDF-1/CXCR4-dependent migration and in vivo homing
pmid: 18760838
S1P1 overexpression stimulates S1P-dependent chemotaxis of human CD34+ hematopoietic progenitor cells but strongly inhibits SDF-1/CXCR4-dependent migration and in vivo homing
The CXC chemokine receptor 4 (CXCR4) and its ligand stromal derived factor 1 (SDF-1) regulate egress and homing of hematopoietic stem cells. Activation of sphingosine-1-phosphate (S1P) receptors (S1P(1-5)) modulates chemokine-induced migration of lymphocytes and hematopoietic stem cells. To analyze the influence of S1P(1) on SDF-1-dependent chemotaxis and trafficking, we overexpressed S1P(1) in CD34+ mobilized peripheral blood progenitor cells (PBPCs). Using a gamma-retroviral vector, transgene overexpression was achieved in more than 90% of target cells. S1P(1) transgene positive PBPCs showed enhanced chemotaxis towards S1P. S1P(1) overexpression resulted in reduced CXCR4 surface expression levels and strong inhibition of SDF-1-dependent ERK1/2 phosphorylation and Ca(2+) flux. Furthermore, SDF-1-dependent migration of S1P(1) overexpressing PBPCs or Jurkat cells was reduced up to 10-fold. Sublethally irradiated NOD/SCID mice were transplanted with 6-day cultured PBPCs overexpressing either S1P(1)-IRES-GFP or GFP alone. Screening for GFP positive human cells in the mouse bone marrow 20h after transplantation revealed an eightfold reduction in bone marrow homing of S1P(1) transgene expressing cells. Our data suggest that S1P(1) acts as an inhibitor of CXCR4-dependent migration of hematopoietic cells to sites of SDF-1 production.
- TU Dresden Germany
Receptors, CXCR4, Chemotaxis, Hematopoietic Stem Cell Transplantation, Antigens, CD34, Mice, SCID, Hematopoietic Stem Cells, Chemokine CXCL12, Hematopoietic Stem Cell Mobilization, Jurkat Cells, Mice, Receptors, Lysosphingolipid, Phenotype, Bone Marrow, Sphingosine, Cell Adhesion, Animals, Humans, Lysophospholipids, Spleen, Signal Transduction
Receptors, CXCR4, Chemotaxis, Hematopoietic Stem Cell Transplantation, Antigens, CD34, Mice, SCID, Hematopoietic Stem Cells, Chemokine CXCL12, Hematopoietic Stem Cell Mobilization, Jurkat Cells, Mice, Receptors, Lysosphingolipid, Phenotype, Bone Marrow, Sphingosine, Cell Adhesion, Animals, Humans, Lysophospholipids, Spleen, Signal Transduction
20 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).41 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
