Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Cell
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Cell
Article . 2009
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Cell
Article . 2009 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 3 versions

SKIP Interacts with c-Myc and Menin to Promote HIV-1 Tat Transactivation

Authors: Vanessa Brès; Tomonori Yoshida; Katherine A. Jones; Loni Pickle;

SKIP Interacts with c-Myc and Menin to Promote HIV-1 Tat Transactivation

Abstract

The Ski-interacting protein SKIP/SNW1 associates with the P-TEFb/CDK9 elongation factor and coactivates inducible genes, including HIV-1. We show here that SKIP also associates with c-Myc and Menin, a subunit of the MLL1 histone methyltransferase (H3K4me3) complex and that HIV-1 Tat transactivation requires c-Myc and Menin, but not MLL1 or H3K4me3. RNAi-ChIP experiments reveal that SKIP acts downstream of Tat:P-TEFb to recruit c-Myc and its partner TRRAP, a scaffold for histone acetyltransferases, to the HIV-1 promoter. By contrast, SKIP is recruited by the RNF20 H2B ubiquitin ligase to the basal HIV-1 promoter in a step that is bypassed by Tat and downregulated by c-Myc. Of interest, we find that SKIP and P-TEFb are dispensable for UV stress-induced HIV-1 transcription, which is strongly upregulated by treating cells with the CDK9 inhibitor flavopiridol. Thus, SKIP acts with c-Myc and Menin to promote HIV-1 Tat:P-TEFb transcription at an elongation step that is bypassed under stress.

Related Organizations
Keywords

Gene Expression Regulation, Viral, Nuclear Receptor Coactivators, Methylation, Histones, Piperidines, Humans, Positive Transcriptional Elongation Factor B, Promoter Regions, Genetic, Molecular Biology, Adaptor Proteins, Signal Transducing, HIV Long Terminal Repeat, Flavonoids, Cyclin T, Nuclear Proteins, Cell Biology, Histone-Lysine N-Methyltransferase, Cyclin-Dependent Kinase 9, DNA-Binding Proteins, Myeloid-Lymphoid Leukemia Protein, DNA Damage, HeLa Cells, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    66
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
66
Top 10%
Top 10%
Top 10%
hybrid