Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mechanisms of Develo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article . 2014
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mechanisms of Development
Article . 2014 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 3 versions

Regulation of mesodermal precursor production by low-level expression of B1 Sox genes in the caudal lateral epiblast

Authors: Karine Rizzoti; Hisato Kondoh; Masanori Uchikawa; Robin Lovell-Badge; Megumi Yoshida; Tatsuya Takemoto;

Regulation of mesodermal precursor production by low-level expression of B1 Sox genes in the caudal lateral epiblast

Abstract

High expression of the B1 Sox genes, Sox2 and Sox3, is associated with the development of definitive neural primordia, the neural plates, in early stage embryos. However, in the caudal lateral epiblast (CLE) where axial stem cells reside, Sox2 and Sox3 are expressed at low levels, together with Brachyury. Because axial stem cells are the bipotential precursors of the neural plate and paraxial mesoderm, we investigated the possibility that low-level B1 Sox expression in CLE may regulate the fate of axial stem cells. We combined the genetic conditions of Sox3-null and Sox2 N1 enhancer homozygous deletion (Sox2(ΔN1/ΔN1)) to decrease B1 Sox expression in CLE. At 5-7 somite stages of mouse embryogenesis, these genetic manipulations caused approximately 30% higher production of paraxial mesodermal precursors, resulting in the development of larger somites. Analysis of mitotic cell populations suggested that decrease of B1 Sox expression in CLE does not activate cell proliferation but promotes cell migration into the mesodermal compartment. Thus, the low-level B1 Sox expression in CLE regulates axial stem cells to adjust the production of paraxial mesoderm precursors to an appropriate level.

Keywords

Embryology, Neural Plate, SOXB1 Transcription Factors, Stem Cells, Embryonic Development, Gene Expression Regulation, Developmental, Mesoderm, Mice, Inbred C57BL, Mice, Somites, Mice, Inbred DBA, Animals, Germ Layers, Developmental Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Top 10%
hybrid