Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mechanisms of Develo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article . 2013
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mechanisms of Development
Article . 2013 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 3 versions

The two Tribolium E(spl) genes show evolutionarily conserved expression and function during embryonic neurogenesis

Authors: Marianthi Kiparaki; Christos Delidakis; Kristina Kux;

The two Tribolium E(spl) genes show evolutionarily conserved expression and function during embryonic neurogenesis

Abstract

Tribolium castaneum is a well-characterised model insect, whose short germ-band mode of embryonic development is characteristic of many insect species and differs from the exhaustively studied Drosophila. Mechanisms of early neurogenesis, however, show significant conservation with Drosophila, as a characteristic pattern of neuroblasts arises from neuroectoderm proneural clusters in response to the bHLH activator Ash, a homologue of Achaete-Scute. Here we study the expression and function of two other bHLH proteins, the bHLH-O repressors E(spl)1 and E(spl)3. Their Drosophila homologues are expressed in response to Notch signalling and antagonize the activity of Achaete-Scute proteins, thus restricting the number of nascent neuroblasts. E(spl)1 and 3 are the only E(spl) homologues in Tribolium and both show expression in the cephalic and ventral neuroectoderm during embryonic neurogenesis, as well as a dynamic pattern of expression in other tissues. Their expression starts early, soon after Ash expression and is dependent on both Ash and Notch activities. They act redundantly, since a double E(spl) knockdown (but not single knockdowns) results in neurogenesis defects similar to those caused by Notch loss-of-function. A number of other activities have been evolutionarily conserved, most notably their ability to interact with proneural proteins Scute and Daughterless.

Keywords

Embryology, Tribolium, Embryo, Nonmammalian, Receptors, Notch, Neurogenesis, Molecular Sequence Data, Embryonic Development, Gene Expression Regulation, Developmental, Genes, Insect, Evolution, Molecular, Drosophila melanogaster, Gene Knockdown Techniques, Ectoderm, Animals, Insect Proteins, Amino Acid Sequence, Transgenes, Conserved Sequence, Phylogeny, Developmental Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Average
Average
Top 10%
hybrid