Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mechanisms of Develo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article . 2010
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mechanisms of Development
Article . 2010 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 3 versions

Transcriptional interactions between the pannier isoforms and the cofactor U-shaped during neural development in Drosophila

Authors: Fromental-Ramain, Catherine; Taquet, Nathalie; Ramain, Philippe;

Transcriptional interactions between the pannier isoforms and the cofactor U-shaped during neural development in Drosophila

Abstract

The pannier (pnr) gene of Drosophila melanogaster encodes two isoforms that belong to the family of GATA transcription factors. The isoforms share an expression domain in the wing discs where they exhibit distinct functions during regulation of the proneural achaete/scute (ac/sc) genes. We previously identified two regions in the pnr locus that drive reporter expression in transgenic lines in patterns that recapitulate the essential features of expression of the two isoforms. Here, we identify promoter regions driving isoform expression, showing that pnr-α regulatory sequences are close to the transcription start site while pnr-β expression requires functional interactions between proximal and distal regulatory elements. We find that the promoter domains necessary for reporter expression also mediate autoregulation of Pnr-β and repression of pnr-α by Pnr-β. The cofactor U-shaped (Ush), which is known to down-regulate the function of Pnr during thorax patterning postranscriptionally, in addition represses pnr-β required for ac/sc activation. Moreover, Ush negatively regulates its own expression, while the pnr isoforms positively regulate ush. Our study uncovers complex transcriptional interactions between the pnr isoforms and the cofactor Ush that may be important for regulation of proneural expression and thorax patterning.

Keywords

Embryology, Models, Genetic, Transcription, Genetic, Animal Structures, Gene Expression Regulation, Developmental, Nervous System, Drosophila melanogaster, Animals, Drosophila Proteins, Homeostasis, Protein Isoforms, Promoter Regions, Genetic, Developmental Biology, Body Patterning, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Average
Average
hybrid