Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mechanisms of Develo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article . 2004
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mechanisms of Development
Article . 2004 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 3 versions

Ablation of the CLP-1 gene leads to down-regulation of the HAND1 gene and abnormality of the left ventricle of the heart and fetal death

Authors: Huang, Facan; Wagner, Michael; Siddiqui, M.A.Q;

Ablation of the CLP-1 gene leads to down-regulation of the HAND1 gene and abnormality of the left ventricle of the heart and fetal death

Abstract

We have recently reported that cardiac lineage protein-1 (CLP-1), a nuclear protein with an acidic region that constitutes a potential protein-protein interaction domain, regulates transcription of the cardiac myosin light chain-2v (MLC-2v) gene promoter in a manner consistent with its being a transcriptional co-activator or regulator. To test the postulate that CLP-1 is a regulator of cardiac genes we ablated the CLP-1 gene in mice. Past embryonic day (E)16.5, CLP-1 null alleles did not show Mendelian inheritance suggesting that absence of CLP-1 was lethal in late fetal stages. CLP-1 (-/-) fetal hearts exhibited a reduced left ventricular chamber with thickened myocardial walls, features suggestive of cardiac hypertrophy. Electron microscopic analysis of E16.5 CLP-1 (-/-) ventricular myocardium showed a marked decline in cell density and altered nuclear and myofibril morphologies similar to that seen in animal models of hypertrophic heart. Analysis of contractile and non-contractile protein genes known to be re-expressed during cardiac hypertrophy showed them to have higher expression levels in CLP-1 (-/-) hearts thereby confirming the hypertrophic phenotype at the molecular level. Analysis of cardiac development genes showed that expression of the HAND1 transcription factor, a gene involved in patterning of the heart tube and down-regulated in hypertrophic hearts, was also significantly reduced in CLP-1 (-/-) fetal hearts. CLP-1 and HAND1 have similar expression patterns in the developing heart ventricles. These data suggest that CLP-1 and the HAND transcription factors may be part of a genetic program critical to proper heart development, perturbation of which can lead to cardiomyopathy.

Keywords

Genetic Markers, Mice, Knockout, Embryology, Heterozygote, Genotype, Heart Ventricles, Homozygote, Down-Regulation, Gene Expression Regulation, Developmental, Mice, Transgenic, Blotting, Northern, Embryo, Mammalian, Mice, Microscopy, Electron, Gene Expression Regulation, Basic Helix-Loop-Helix Transcription Factors, Animals, Cardiomyopathies, Cardiac Myosins, Alleles, In Situ Hybridization, Developmental Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    60
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
60
Average
Top 10%
Top 10%
hybrid