Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao MPG.PuRearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
MPG.PuRe
Article . 2006
Data sources: MPG.PuRe
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Neuroscience
Article . 2006 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions

Synapse disassembly and formation of new synapses in postnatal muscle upon conditional inactivation of MuSK

Authors: Hesser, B.; Henschel, O.; Witzemann, V.;

Synapse disassembly and formation of new synapses in postnatal muscle upon conditional inactivation of MuSK

Abstract

The muscle-specific-kinase MuSK is required for the formation of acetylcholine receptor clusters during embryonic development, but its physiological role in adult muscle is not known. We used the loxP/Cre system in mice to conditionally inactivate MuSK whereby expression of Cre recombinase increases during postnatal development. The MuSK-inactivated mice develop myasthenic symptoms and die prematurely due to severe muscle weakness. The postnatal inactivation of MuSK causes loss of acetylcholine receptors and disassembly of the postsynaptic organization and innervating axons retract but start to grow and branch extensively. Due to the mosaic expression of Cre recombinase, MuSK is not globally inactivated and new synapses are formed aberrantly patterned across the diaphragm. Our findings demonstrate that MuSK kinase activity is required throughout postnatal development to hold up MuSK and AChR levels at endplates. Thus, MuSK and AChR together maintain the functional and structural integrity of the postsynaptic architecture and prevent axon growth.

Keywords

Male, Mice, Knockout, Motor Neurons, Neuronal Plasticity, Integrases, Genetic Vectors, Growth Cones, Neuromuscular Junction, Down-Regulation, Cell Differentiation, Mice, Transgenic, Acetylcholine, Mice, Inbred C57BL, Mice, Animals, Newborn, Animals, Female, Gene Silencing, Nerve Growth Factors, Muscle, Skeletal

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    116
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
116
Top 10%
Top 10%
Top 10%