Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular and Cellul...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Endocrinology
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Probasin promoter assembles into a strongly positioned nucleosome that permits androgen receptor binding

Authors: Maffey, Allison H.; Ishibashi, Toyotaka; He, Cheng; Wang, Xiaoying; White, Adrienne R.; Hendy, Stephen C.; Nelson, Colleen C.; +2 Authors

Probasin promoter assembles into a strongly positioned nucleosome that permits androgen receptor binding

Abstract

The promoter of the murine probasin (PB) gene exhibits strong androgen receptor (AR)-specific and tissue-specific regulation and is considered a promising candidate for gene therapy treatment of advanced prostate cancer. To characterize the determinants of chromatin specificity of the PB promoter with the AR we initially investigated the in vitro interactions of recombinant AR DNA binding domain (AR-DBD) with reconstituted nucleosomes incorporating the proximal PB promoter (nucleotides -268 to -76). We demonstrate that a DNA fragment of this promoter region exhibits strong nucleosome positioning. The phased DNA sequence protected by the histone octamer includes four androgen receptor response elements (AREs) which are arranged as two sets of class I and class II sites spaced approximately 90bp apart. Class I AREs form classical contacts with the AR, whereas class II AREs contain atypical binding sequences and have been shown to stabilize AR binding to adjacent class I sites, resulting in synergistic transcriptional activation and increased hormone sensitivity. We used DNase 1 footprinting and electrophoretic mobility shift assays (EMSA) to show that the AR-DBD binds to its cognate sequences independently of their nucleosomal organization. In addition, we show that the ability of the AR-DBD to interact with the nucleosomal PB promoter is not affected by histone acetylation. Thus the AR-DBD is able to bind to its cognate sequences within the PB promoter in a way that is indifferent to the presence or absence of histones and nucleosomal structure.

Countries
China (People's Republic of), Australia, China (People's Republic of)
Keywords

570, 572, Probasin, DNA Footprinting, Androgen-Binding Protein, Histones, Mice, 616, Animals, Deoxyribonuclease I, Promoter Regions, Genetic, Base Pairing, Acetylation, Recombinant Proteins, Nucleosomes, Protein Structure, Tertiary, Androgen receptor, Histone acetylation, Nucleosome, Receptors, Androgen, Chickens, Positioning, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Average
Average
Top 10%
Related to Research communities
Cancer Research