Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Matrix Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Matrix Biology
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Matrix Biology
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions

Osteopontin binding to the alpha 4 integrin requires highest affinity integrin conformation, but is independent of post-translational modifications of osteopontin

Authors: Hui, Tommy; Sørensen, Esben Skipper; id_orcid 0000-0002-7050-3354; Rittling, Susan R.;

Osteopontin binding to the alpha 4 integrin requires highest affinity integrin conformation, but is independent of post-translational modifications of osteopontin

Abstract

Osteopontin (OPN) is a ligand for the α4ß1 integrin, but the physiological importance of this binding is not well understood. Here, we have assessed the effect of post-translational modifications on OPN binding to the α4 integrin on cultured human leukocyte cell lines and compared OPN interaction with α4 integrin to that of VCAM and fibronectin. Jurkat cells, whose α4 integrins are inherently activated, adhered to different preparations of OPN in the presence of Mn(2+): the EC50 of adhesion was not affected by phosphorylation or glycosylation status. Thrombin cleavage of OPN at the C-terminus of the α4 integrin-binding site also did not affect binding affinity. THP-1 cells express a low-affinity conformation of the integrin and adhered to OPN only in the presence of Mn(2+) plus PMA or an activating antibody. This was in contrast to VCAM and fibronectin: THP-1 cells adhered to these ligands without integrin activation. Studies with ligand-induced binding site antibodies demonstrated that the SVVYGLR peptide of OPN bound to the α4 integrin with a similar affinity as the LDV peptide of fibronectin, suggesting that a high off-rate is responsible for the reduced binding of OPN to the low-affinity forms of this integrin. Together, the results suggest OPN has very low affinity for the α4 integrin on human leukocytes under physiological conditions.

Related Organizations
Keywords

Binding Sites, Protein Conformation, Integrin alpha4, Thrombin, Vascular Cell Adhesion Molecule-1, Jurkat Cells, Cell Line, Tumor, Leukocytes, Humans, Osteopontin, Phosphorylation, Protein Processing, Post-Translational, Integrin alpha5beta1

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Average
Top 10%
Green
bronze