Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Structura...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Structural Biology
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Structural investigation of the interaction between the tandem SH3 domains of c-Cbl-associated protein and vinculin

Authors: Debiao, Zhao; Xuejuan, Wang; Junhui, Peng; Chongyuan, Wang; Fudong, Li; Qianqian, Sun; Yibo, Zhang; +7 Authors

Structural investigation of the interaction between the tandem SH3 domains of c-Cbl-associated protein and vinculin

Abstract

c-Cbl-associated protein (CAP) is an important cytoskeletal adaptor protein involved in the regulation of adhesion turnover. The interaction between CAP and vinculin is critical for the recruitment of CAP to focal adhesions. The tandem SH3 domains (herein termed SH3a and SH3b) of CAP are responsible for its interaction with vinculin. However, the structural mechanism underlying the interaction between CAP and vinculin is poorly understood. In this manuscript, we report the solution structure of the tandem SH3 domains of CAP. Our NMR and ITC data indicate that the SH3a and SH3b domains of CAP simultaneously bind to a long proline-rich region of vinculin with different binding specificities. Furthermore, the crystal structures of the individual SH3a and SH3b domains complexed with their substrate peptides indicate that Q807(SH3a) and D881(SH3b) are the critical residues determining the different binding specificities of the SH3 domains. Based on the obtained structural information, a model of the SH3ab-vinculin complex was generated using MD simulation and SAXS data.

Related Organizations
Keywords

Focal Adhesions, Binding Sites, Sequence Homology, Amino Acid, Protein Conformation, Microfilament Proteins, Molecular Dynamics Simulation, Vinculin, Substrate Specificity, src Homology Domains, Humans, Nuclear Magnetic Resonance, Biomolecular, Cytoskeleton, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Average