Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Pediatric...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Pediatric Surgery
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
HKU Scholars Hub
Article . 2010
Data sources: HKU Scholars Hub
versions View all 3 versions

Application of HapMap data to the evaluation of 8 candidate genes for pediatric slow transit constipation

Authors: John M. Hutson; John M. Hutson; William T. Holden; Merce Garcia-Barcelo; Xiaoping Miao; Jason H. Moore; Sebastian K. King; +4 Authors

Application of HapMap data to the evaluation of 8 candidate genes for pediatric slow transit constipation

Abstract

Slow transit constipation (STC) affects up to 3% of all children and is an increasingly recognized cause of chronic constipation in children. We conducted a pilot study to investigate whether genes encoding neurotransmitters (TAC1, TAC3, VIP, NOS1) and receptors (TACR1, TACR2, TACR3, KIT) could be responsible for STC.One hundred seventeen tag single nucleotide polymorphisms (SNPs), distributed among the candidate genes, were selected from HapMap data and genotyped using Sequenom (San Diego, CA) technology in 35 affected families. Evaluation of association was performed by transmission disequilibrium test and multilocus analysis.Five SNPs (rs3771863, rs4580655, rs11722288, rs4563545, and rs3782221) in the TACR1, TACR3, KIT, and NOS1 genes were found to be potentially associated with STC, although the significance of these results does not withstand correction for multiple testing.Our data indicate that 5 SNPs in the NOS1, TACR1, TACR3, and KIT genes could be involved in STC, especially rs3771863 in intron 1 of TACR1, which showed the highest association.

Keywords

Male, Neurotransmitter Agents, Adolescent, Genotype, Neurotransmitters, Nitric Oxide Synthase Type I, Polymorphism, Single Nucleotide, Enteric Nervous System, Linkage Disequilibrium, Candidate genes, Receptors, Neurotransmitter, Pediatric slow transit constipation, Child, Preschool, 616, Chronic Disease, Humans, Female, Child, Gastrointestinal Transit, Constipation, Vasoactive Intestinal Peptide

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Average