Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Molecular...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular Graphics and Modelling
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions

Structural analysis of experimental drugs binding to the SARS-CoV-2 target TMPRSS2

Authors: Huggins, David J.;

Structural analysis of experimental drugs binding to the SARS-CoV-2 target TMPRSS2

Abstract

The emergence of SARS-CoV-2 has prompted a worldwide health emergency. There is an urgent need for therapeutics, both through the repurposing of approved drugs and the development of new treatments. In addition to the viral drug targets, a number of human drug targets have been suggested. In theory, targeting human proteins should provide an advantage over targeting viral proteins in terms of drug resistance, which is commonly a problem in treating RNA viruses. This paper focuses on the human protein TMPRSS2, which supports coronavirus life cycles by cleaving viral spike proteins. The three-dimensional structure of TMPRSS2 is not known and so we have generated models of the TMPRSS2 in the apo state as well as in complex with a peptide substrate and putative inhibitors to aid future work. Importantly, many related human proteases have 80% or higher identity with TMPRSS2 in the S1-S1' subsites, with plasminogen and urokinase-type plasminogen activator (uPA) having 95% identity. We highlight 376 approved, investigational or experimental drugs targeting S1A serine proteases that may also inhibit TMPRSS2. Whilst the presence of a relatively uncommon lysine residue in the S2/S3 subsites means that some serine protease inhibitors will not inhibit TMPRSS2, this residue is likely to provide a handle for selective targeting in a focused drug discovery project. We discuss how experimental drugs targeting related serine proteases might be repurposed as TMPRSS2 inhibitors to treat coronaviruses.

Keywords

Pneumonia, Viral, Molecular Dynamics Simulation, Ligands, Antiviral Agents, Article, Protein Structure, Secondary, Betacoronavirus, Catalytic Domain, Materials Chemistry, Humans, Protease Inhibitors, Protein Interaction Domains and Motifs, Amino Acid Sequence, Physical and Theoretical Chemistry, Pandemics, Spectroscopy, SARS-CoV-2, Drug Repositioning, COVID-19, Plasminogen, Computer Graphics and Computer-Aided Design, Host-Pathogen Interactions, Coronavirus Infections, Sequence Alignment, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Average
Top 10%
Green
hybrid