Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRIS - Institutional...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of the Mechanical Behavior of Biomedical Materials
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions

A comparative study of the mechanical properties of a dinosaur and crocodile fossil teeth

Authors: Massimo Bernardi; Lakshminath Kundanati; Mirco D'Incau; Paolo Scardi; Nicola M. Pugno; Nicola M. Pugno; Nicola M. Pugno;

A comparative study of the mechanical properties of a dinosaur and crocodile fossil teeth

Abstract

Vertebrate teeth are complex structures adapted in terms of shape and structure to serve a variety of functions like biting and grinding. Thus, examining the morphology, composition and mechanical properties of the teeth can aid in providing insights into the feeding behaviour of extinct species. We here provide the first mechanical characterisation of teeth in a spinosaurid dinosaur, Suchomimus tenerensis, and a pholidosaurid crocodylomorph, Sarcosuchus imperator. Our results show that both species have similar macrostructure of enamel, dental and interfacial layers, and similar composition, the main constituent being fluorapatite. Microindentation tests show that Suchomimus teeth have lower elastic modulus and hardness, as compared to Sarchosuchus. On the contrary, Sarcosuchus teeth have lower toughness. Nanoindentation showed the existence of mechanical gradients from dentin to enamel in Suchomimus and, less prominently, in Sarcosuchus. This was also supported by wear tests showing that in Suchomimus the dentin region is more wear-prone than the enamel region. With still scarce information available on the dietary regimes in extinct species, the analysis of micro and nano-mechanical properties of fossils teeth might be a help in targeting specific biological questions. However, much is still unknown concerning the changes underwent by organic material during diagenesis making at present impossible to definitely conclude if the differences in the mechanical properties of Suchomimus and Sarchosuchus here retrieved imply that the two species adopted different strategies when dealing with food processing or are the result of disparate taphonomic histories.

Countries
United Kingdom, Italy
Keywords

Scratch test, Suchomimus tenerensis, Alligators and Crocodiles, Microscopy, Fossils, Nanoindentation, Elasticity, Dinosaurs, Microindentation; Nanoindentation; Sarcosuchus imperator; Scratch test; Suchomimus tenerensis, Species Specificity, X-Ray Diffraction, Hardness, Elastic Modulus, Dentin, Pressure, Sarcosuchus imperator, Animals, Stress, Mechanical, Dental Enamel, Microindentation, Tooth

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Average
Green
bronze