Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Molecular...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular Biology
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Quantitative Dissection of the Notch:CSL Interaction: Insights into the Notch-mediated Transcriptional Switch

Authors: Olga Y, Lubman; Ma Xenia G, Ilagan; Raphael, Kopan; Doug, Barrick;

Quantitative Dissection of the Notch:CSL Interaction: Insights into the Notch-mediated Transcriptional Switch

Abstract

Complex formation between the intracellular domain of the Notch receptor (NICD) and the transcription factor CSL is indispensable for transcriptional activation. To understand how NICD displaces CSL-associated co-repressors, we have quantified the binding of different Notch1 ICD regions to a key interaction domain (the beta trefoil domain, or BTD) of human CSL. Electrophoresis, scattering, and titration calorimetry indicate that NICD and BTD combine to form a 1:1 heterodimer. Neither the Notch1 ankyrin domain (ANK) nor C-terminal region contributes binding energy towards BTD. In contrast, binding energy is attributed largely to a short segment including the conserved WFP sequence motif within the RAM region (the approximately 140 residue polypeptide segment N-terminal to the ANK domain); substitution of this motif substantially reduces affinity. Short (< or =25 residues) WFP-containing peptides encoded by the four mammalian Notch genes have similar affinities to BTD; thus, activity differences between paralogues either result from other regions of NICD and CSL or from differences in interaction with downstream components. The importance of RAM was demonstrated by the ability of a short RAM peptides to dissociate NICD:CSL interaction in cellular lysates. These results support an emerging molecular mechanism for the displacement of co-repressors from DNA-bound CSL by NICD.

Related Organizations
Keywords

Cell Extracts, Receptors, Notch, Transcription, Genetic, Molecular Sequence Data, Sequence Homology, Calorimetry, Protein Structure, Secondary, Protein Structure, Tertiary, Solutions, Mice, Immunoglobulin J Recombination Signal Sequence-Binding Protein, Animals, Humans, Thermodynamics, Electrophoresis, Polyacrylamide Gel, Amino Acid Sequence, Peptides, Dimerization, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    86
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
86
Top 10%
Top 10%
Top 10%
bronze