Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Hepatolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Hepatology
Article . 2012 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Hepatology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2012
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Hepatology
Article . 2012
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Hepatology
Article . 2012
Data sources: u:cris
versions View all 6 versions

M6P/IGF2R modulates the invasiveness of liver cells via its capacity to bind mannose 6-phosphate residues

Authors: Johannes Wieser; Nicole Taub; Verena Puxbaum; George C.T. Yeoh; Wolfgang Mikulits; Lukas Mach; Pia-Maria Blaas; +4 Authors

M6P/IGF2R modulates the invasiveness of liver cells via its capacity to bind mannose 6-phosphate residues

Abstract

The mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF2R), a multifunctional protein, plays a central role in intracellular targeting of lysosomal enzymes and control of insulin-like growth factor II (IGF-II) bioactivity. Importantly, the gene encoding this receptor is frequently inactivated in a wide range of malignant tumors including hepatocellular carcinomas. Thus, M6P/IGF2R is considered a putative liver tumor suppressor. The aim of this study was to establish the impact of the receptor on the invasive properties of liver cells.Reconstitution experiments were performed by expression of wild type and mutant M6P/IGF2R in receptor-deficient FRL14 fetal rat liver cells. RNA interference was used to induce M6P/IGF2R downregulation in receptor-positive MIM-1-4 mouse hepatocytes.We show that the M6P/IGF2R status exerts a strong impact on the invasiveness of tumorigenic rodent liver cells. M6P/IGF2R-deficient fetal rat liver cells hypersecrete lysosomal cathepsins and penetrate extracellular matrix barriers in a cathepsin-dependent manner. Forced expression of M6P/IGF2R restores intracellular transport of cathepsins to lysosomes and concomitantly reduces the tumorigenicity and invasive potential of these cells. Conversely, M6P/IGF2R knock-down in receptor-positive mouse hepatocytes causes increased cathepsin secretion as well as enhanced cell motility and invasiveness. We also demonstrate that functional M6P-binding sites are important for the anti-invasive properties of M6P/IGF2R, whereas the capacity to bind IGF-II is dispensable for the anti-invasive activity of the receptor in liver cells.M6P/IGF2R restricts liver cell invasion by preventing the pericellular action of M6P-modified proteins.

Country
Austria
Keywords

Hepatocellular carcinoma, 301904 Krebsforschung, Receptor, IGF Type 2, Cathepsin, Cell Line, Mice, SDG 3 - Good Health and Well-being, Cell Movement, Leucine, Animals, Humans, Neoplasm Invasiveness, Cell Proliferation, Mannosephosphates, Hepatology, Liver Neoplasms, Lysosome, Cell invasion, Rats, SDG 3 – Gesundheit und Wohlergehen, Hepatocytes, Matrix degradation, 301904 Cancer research, Lysosomes, Research Article, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Average
Top 10%
Green
hybrid