Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Biotechno...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Biotechnology
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

A kinetic-dynamic model for regulatory RNA processing

Authors: Sher, Singh; Hsiu-Yi Ou, Yang; Mei-Ying, Chen; Sung-Liang, Yu;

A kinetic-dynamic model for regulatory RNA processing

Abstract

A kinetic-dynamic model was proposed to simulate RNA processing by determining four essential reaction rates, including the rates of transcription, pre-mRNA turnover, pre-mRNA splicing, and mRNA decay. A family competition evolutionary algorithm (FCEA) was adapted herein to approximate these rates. Several artificial datasets were used to verify the correctness and robustness of the FCEA. The model was finally applied on time series data of yeast prp4-l mutant cells for determination of rates of RNA processing. Based on the FCEA, the model indicated that the pre-mRNA splicing was decreased in the mutant cells as well as the possible effects on transcription, pre-mRNA turnover, and mRNA decay, which was consistent with surveyed literature.

Keywords

Saccharomyces cerevisiae Proteins, Ribonucleoprotein, U4-U6 Small Nuclear, RNA Splicing, RNA Stability, Saccharomyces cerevisiae, Protein Serine-Threonine Kinases, Models, Biological, Kinetics, RNA Precursors, RNA Splicing Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average