Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2022
License: CC BY
Data sources: PubMed Central
versions View all 3 versions

Mechanism of proteasome gate modulation by assembly chaperones Pba1 and Pba2

Authors: Helena M. Schnell; Jessie Ang; Shaun Rawson; Richard M. Walsh; Yagmur Micoogullari; John Hanna;

Mechanism of proteasome gate modulation by assembly chaperones Pba1 and Pba2

Abstract

The active sites of the proteasome are housed within its central core particle (CP), a barrel-shaped chamber of four stacked heptameric rings, and access of substrates to the CP interior is mediated by gates at either axial end. These gates are constitutively closed and may be opened by the regulatory particle (RP), which binds the CP and facilitates substrate degradation. We recently showed that the heterodimeric CP assembly chaperones Pba1/2 also mediate gate opening through an unexpected structural arrangement that facilitates the insertion of the N terminus of Pba1 into the CP interior; however, the full mechanism of Pba1/2-mediated gate opening is unclear. Here, we report a detailed analysis of CP gate modulation by Pba1/2. The clustering of key residues at the interface between neighboring α-subunits is a critical feature of RP-mediated gate opening, and we find that Pba1/2 recapitulate this strategy. Unlike RP, which inserts at six α-subunit interfaces, Pba1/2 insert at only two α-subunit interfaces. Nevertheless, Pba1/2 are able to regulate six of the seven interfacial clusters, largely through direct interactions. The N terminus of Pba1 also physically interacts with the center of the gate, disrupting the intersubunit contacts that maintain the closed state. This novel mechanism of gate modulation appears to be unique to Pba1/2 and therefore likely occurs only during proteasome assembly. Our data suggest that release of Pba1/2 at the conclusion of assembly is what allows the nascent CP to assume its mature gate conformation, which is primarily closed, until activated by RP.

Related Organizations
Keywords

Cytoplasm, Proteasome Endopeptidase Complex, Saccharomyces cerevisiae Proteins, Saccharomyces cerevisiae, Research Article, Molecular Chaperones

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Green
gold