Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Human Pathologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Human Pathology
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Evidence for the role of matrix metalloproteinase-13 in bone resorption by giant cell tumor of bone

Authors: Snezana Popovic; William C.H. Wu; Robert E. Turcotte; Isabella W.Y. Mak; Gurmit Singh; Gurmit Singh; Michelle Ghert; +5 Authors

Evidence for the role of matrix metalloproteinase-13 in bone resorption by giant cell tumor of bone

Abstract

Giant cell tumor of bone (GCT) is an aggressively osteolytic primary bone tumor that is characterized by the presence of abundant multinucleated osteoclast-like giant cells, hematopoietic monocytes, and a distinct mesenchymal stromal cell component. Previous work in our laboratory has shown that matrix metalloproteinase (MMP)-13 is the principal proteinase expressed by the stromal cells of GCT. The release of cytokines, particularly interleukin-1beta, by the giant cells of GCT acts on stromal cells to stimulate a surge in MMP-13 secretion. The purpose of this study was to determine the bone resorption capabilities of the cellular elements of GCT and the significance of the MMP-13 expression involved in GCT bone resorption. We present a 3-dimensional histomorphometric technique developed to analyze resorption pit depth and yield an accurate measurement of bone resorption with a direct physical view of lacunae on bone slices. In this study, we demonstrate that the mesenchymal stromal cells and the multinucleated giant cells of GCT are independently capable of bone resorption. However, coculture of these 2 cell fractions shows a synergistic increase in bone resorption. In addition, inhibition of MMP-13 reduces resorptive activity of the cells indicating that MMP-13 likely plays an important role in this tumor. This cell-cell cooperation involves giant cell-derived cytokine up-regulation of MMP-13 in the stromal cells, which in turn assists the giant cells in bone resorption. Future research will involve elucidation of the role of cell-cell/matrix communication pathways in bone resorption and tumorigenesis in GCT.

Keywords

Giant Cell Tumor of Bone, Bone Neoplasms, Mesenchymal Stem Cells, Cell Communication, Cell Separation, Osteolysis, Giant Cells, Up-Regulation, Cell Line, Tumor, Matrix Metalloproteinase 13, Biomarkers, Tumor, Image Processing, Computer-Assisted, Humans, Stromal Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Average
Top 10%
Top 10%