Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Heart Rhythmarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Heart Rhythm
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

A missense mutation in the sodium channel β1b subunit reveals SCN1B as a susceptibility gene underlying long QT syndrome

Authors: Helena Riuró; Oscar Campuzano; Elena Arbelo; Anna Iglesias; Montserrat Batlle; Felix Pérez-Villa; Josep Brugada; +3 Authors

A missense mutation in the sodium channel β1b subunit reveals SCN1B as a susceptibility gene underlying long QT syndrome

Abstract

Long QT syndrome (LQTS) is associated with sudden cardiac death and the prolongation of the QT interval on the electrocardiogram. A comprehensive screening of all genes previously associated with this disease leaves 30% of the patients without a genetic diagnosis. Pathogenic mutations in the sodium channel β subunits have been associated with cardiac channelopathies, including SCN4B mutations in LQTS.To evaluate the role of mutations in the sodium channel β subunits in LQTS.We screened for mutations in the genes encoding the 5 sodium β subunits (SCN1B isoforms a and b, SCN2B, SCN3B, and SCN4B) from 30 nonrelated patients who were clinically diagnosed with LQTS without mutations in common LQTS-related genes. We used the patch-clamp technique to study the properties of sodium currents and the action potential duration in human embryonic kidney and HL-1 cells, respectively, in the presence of β1b subunits.The genetic screening revealed a novel mutation in the SCN1Bb gene (β1bP213T) in an 8-year-old boy. Our electrophysiological analysis revealed that β1bP213T increases late sodium current. In addition, β1bP213T subtly altered Nav1.5 function by shifting the window current, accelerating recovery from inactivation, and decreasing the slow inactivation rate. Moreover, experiments using HL-1 cells revealed that the action potential duration significantly increases when the mutant β1b was overexpressed compared with β1bWT.These data revealed SCN1Bb as a susceptibility gene responsible for LQTS, highlighting the importance of continuing the search for new genes and mechanisms to decrease the percentage of patients with LQTS remaining without genetic diagnosis.

Keywords

Adult, Male, Patch-Clamp Techniques, Cell Culture Techniques, Mutation, Missense, Middle Aged, Voltage-Gated Sodium Channel beta-1 Subunit, Sodium Channels, Electrocardiography, Long QT Syndrome, Young Adult, Humans, Female, Genetic Predisposition to Disease, Genetic Testing, Child, Electrophysiologic Techniques, Cardiac

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 10%