<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Identification of proteasome subunit beta type 2 associated with deltamethrin detoxification in Drosophila Kc cells by cDNA microarray analysis and bioassay analyses
pmid: 26850132
Identification of proteasome subunit beta type 2 associated with deltamethrin detoxification in Drosophila Kc cells by cDNA microarray analysis and bioassay analyses
Insecticide deltamethrin resistance has presented a difficult obstacle for pest control and the resistance development is complex and associated with many genes. To better understand the possible molecular mechanisms involved in DM stress, in this study, cDNA microarray analysis was employed. 448 differentially expressed genes with at least a 2-fold expression difference were identified in Drosophila cells after DM exposure. Moreover, some genes were confirmed with qPCR, which yielded results consistent with the microarray analysis. Three members of the ubiquitin-proteasome system were significantly elevated in DM-stressed cells, suggesting that the ubiquitin-proteasome pathway may play an important role in DM detoxification. The proteasome beta2 subunit (Prosbeta2) is a member of 20S proteasome subunit family, which forms the proteolytic core of 26S proteasome. Whether Prosbeta2 participates in DM detoxification requires further study. RNAi and heterologous expression were conducted to investigate the contribution of Prosbeta2 in DM detoxification. The results revealed Prosbeta2 knockdown significantly reduce the level of DM detoxification in RNAi-treated cells after 48 h. Overexpression of Prosbeta2 increased cellular viability. These detoxification results represent the first evidence that Prosbeta2 plays a role in the detoxification of DM, which may provide new idea and target for studying the molecular mechanisms of insect resistance.
- Nanjing Normal University China (People's Republic of)
- Nanjing Normal University China (People's Republic of)
Proteasome Endopeptidase Complex, Insecticide Resistance, Gene Expression Regulation, Gene Knockdown Techniques, Endopeptidases, Nitriles, Pyrethrins, Animals, Drosophila Proteins, Drosophila, Oligonucleotide Array Sequence Analysis
Proteasome Endopeptidase Complex, Insecticide Resistance, Gene Expression Regulation, Gene Knockdown Techniques, Endopeptidases, Nitriles, Pyrethrins, Animals, Drosophila Proteins, Drosophila, Oligonucleotide Array Sequence Analysis
23 Research products, page 1 of 3
- 2018IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
