Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Genearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Gene
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Identification of LATS transcriptional targets in HeLa cells using whole human genome oligonucleotide microarray

Authors: Stacy, Visser; Xiaolong, Yang;

Identification of LATS transcriptional targets in HeLa cells using whole human genome oligonucleotide microarray

Abstract

Human LATS1 and LATS2) (LATS1/2) are tumor suppressors that have been shown to be mutated or downregulated in several human cancers including leukemia, lung, prostate and breast cancers. However, the precise mechanisms and the proteins modulated by LATS1/2 that are responsible for these events remain largely unknown. To elucidate potential signaling pathways, the current study investigated the expression profile in HeLa cells with reduced expression of LATS1/2. Using RNA-mediated interference, both LATS1 and LATS2 were substantially knocked-down, and accordingly, this lead to an increase in multiple phenotypes associated with tumor progression, including enhanced cell proliferation, resistance to drug-induced cell death, and increased cell migration. Using whole human genome Oligo (60-mer) arrays (Agilent), genes modulated by loss of LATS1/2 were identified and functionally grouped into categories including cell proliferation, cell death, cell adhesion and motility, as well as cell communication. Selected genes, including known tumor suppressor genes and oncogenes such as CDKN1A, WISP2, SLIT2, TP53INP1, BIRC4BP, SPRY2, SPRY4, SPRED1, FAT4, and CYR61 were confirmed by qRT-PCR to be significantly differentially expressed. Importantly, the collection of genes identified suggests that LATS1/2 function through diverse mechanisms and multiple signaling pathways including the Hippo signaling pathway, as well as the p53, Ras-ERK, or WNT networks, to inhibit tumor progression.

Related Organizations
Keywords

Base Sequence, Cell Death, Transcription, Genetic, Genome, Human, Gene Expression Profiling, Tumor Suppressor Proteins, Protein Serine-Threonine Kinases, Polymerase Chain Reaction, Cell Movement, Gene Knockdown Techniques, Humans, RNA Interference, RNA, Small Interfering, Cell Proliferation, HeLa Cells, Oligonucleotide Array Sequence Analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Top 10%
Top 10%
Top 10%
Related to Research communities
Cancer Research