Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://dx.doi.org/10...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
FEBS Letters
Article . 2014 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
FEBS Letters
Article . 2014
versions View all 3 versions

Expression of synaptopodin in endothelial cells exposed to laminar shear stress and its role in endothelial wound healing

Authors: Mun, Gyeong In; Park, Soojin; Kremerskothen, Joachim; Boo, Yong Chool;

Expression of synaptopodin in endothelial cells exposed to laminar shear stress and its role in endothelial wound healing

Abstract

We examined the hypothesis that certain actin binding proteins might be upregulated by laminar shear stress (LSS) and could contribute to endothelial wound healing. Analysis of mRNA expression profiles of human umbilical vein endothelial cells under static and LSS‐exposed conditions provided a list of LSS‐induced actin binding proteins including synaptopodin (SYNPO) whose endothelial expression has not been previously reported. Additional studies demonstrated that SYNPO is a key mediator of endothelial wound healing because small interfering RNA‐mediated suppression of SYNPO attenuated wound closure under LSS whereas overexpression of exogenous SYNPO enhanced endothelial wound closure in the absence of LSS. This study suggests that LSS‐induced actin binding proteins including SYNPO may play a critical role in the endothelial wound healing stimulated by LSS.

Related Organizations
Keywords

Wound Healing, Shear stress, Microfilament Proteins, Wound healing, Biomechanical Phenomena, Endothelial cell, Cell Movement, Stress, Physiological, Human Umbilical Vein Endothelial Cells, Humans, Endothelium, Vascular, Transcriptome, Cells, Cultured, Synaptopodin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Top 10%