Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Cell
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Cell
Article . 2011
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Cell
Article . 2011 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
https://dx.doi.org/10.5167/uzh...
Other literature type . 2011
Data sources: Datacite
versions View all 7 versions

Antagonistic Growth Regulation by Dpp and Fat Drives Uniform Cell Proliferation

Authors: Schwank, G; Tauriello, G; Yagi, R; Kranz, E; Koumoutsakos, P; Basler, K;

Antagonistic Growth Regulation by Dpp and Fat Drives Uniform Cell Proliferation

Abstract

We use the Dpp morphogen gradient in the Drosophila wing disc as a model to address the fundamental question of how a gradient of a growth factor can produce uniform growth. We first show that proper expression and subcellular localization of components in the Fat tumor-suppressor pathway, which have been argued to depend on Dpp activity differences, are not reliant on the Dpp gradient. We next analyzed cell proliferation in discs with uniformly high Dpp or uniformly low Fat signaling activity and found that these pathways regulate growth in a complementary manner. While the Dpp mediator Brinker inhibits growth in the primordium primarily in the lateral regions, Fat represses growth mostly in the medial region. Together, our results indicate that the activities of both signaling pathways are regulated in a parallel rather than sequential manner and that uniform proliferation is achieved by their complementary action on growth.

Related Organizations
Keywords

Cell Polarity, Gene Expression Regulation, Developmental, Models, Biological, 10124 Institute of Molecular Life Sciences, 1309 Developmental Biology, 1307 Cell Biology, Drosophila melanogaster, SX00 SystemsX.ch, SX15 WingX, 1300 General Biochemistry, Genetics and Molecular Biology, 1312 Molecular Biology, 570 Life sciences; biology, Animals, Drosophila Proteins, Wings, Animal, Cell Adhesion Molecules, Developmental Biology, Body Patterning, Cell Proliferation, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    67
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
67
Top 10%
Top 10%
Top 1%
hybrid