Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Research@WURarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research@WUR
Article . 2014
Data sources: Research@WUR
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Colloids and Surfaces A Physicochemical and Engineering Aspects
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Identifying changes in chemical, interfacial and foam properties of β-lactoglobulin–sodium dodecyl sulphate mixtures

Authors: Harry Gruppen; Peter A. Wierenga; Frederik J. Lech; Marcel B.J. Meinders; Paulien Steltenpool; Stefano Sforza; Stefano Sforza;

Identifying changes in chemical, interfacial and foam properties of β-lactoglobulin–sodium dodecyl sulphate mixtures

Abstract

Abstract Techno-functional properties of proteins, such as foam stability, can be affected by the presence of low-molecular-weight surfactants. In order to understand and control the foam properties of such protein–surfactant mixtures, a thorough characterization of foam and interfacial properties needs to be supplemented by a detailed analysis of the structural changes of the protein and possible complexation with the surfactant. In this study, β-lactoglobulin (BLG) was mixed with sodium dodecyl sulphate (SDS) in different molar ratios (MRs). The foam half-life time of BLG-SDS mixtures decreased from that of pure BLG (315 min at MR 0) to 44 min at MR 20, which is close to the half-life of SDS at the respective concentration. With a further increase in the MR, the foam stability of the mixture increased, similar to the stability of SDS, to 250 min at the highest MR (MR 100). The minimum in the foam stability curve was not reflected in the interfacial properties ( Π and E d ). Π decreased and E d increased continuously with increasing MR from values close to those of protein towards values typically found in pure surfactant solutions. The results show no clear correlation between the interfacial and foaming properties. In addition, it was shown by isothermal titration calorimetry and mass spectrometry that SDS molecules bind to the BLG. This leads to the formation of BLG-SDS complexes. These complexes have large influence on the foam properties in the mixture. The combination of analytical methods that were used give insights about protein complexation and the resulting change of foam properties of the mixture.

Countries
Italy, Netherlands
Related Organizations
Keywords

air-water interfaces, 570, liquid interfaces, adsorption layers, air/water interface, stability, 630, food proteins, mixed layers, protein-surfactant interactions, rheology, competitive adsorption

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Top 10%
Top 10%