Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archive ouverte UNIG...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cellular Signalling
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
http://dx.doi.org/10.1016/j.ce...
Article . 2014 . Peer-reviewed
Data sources: SNSF P3 Database
versions View all 5 versions

Regulation of contractile signaling and matrix remodeling by T-cadherin in vascular smooth muscle cells: Constitutive and insulin-dependent effects

Authors: Frismantiene, Agne; Pfaff, Dennis; Frachet, Audrey; Coen, Matteo; Joshi, Manjunath B; Maslova, Kseniya; Bochaton-Piallat, Marie-Luce; +3 Authors

Regulation of contractile signaling and matrix remodeling by T-cadherin in vascular smooth muscle cells: Constitutive and insulin-dependent effects

Abstract

Expression of GPI-anchored T-cadherin (T-cad) on vascular smooth muscle cells (VSMC) is elevated in vascular disorders such as atherosclerosis and restenosis which are associated with insulin resistance. Functions for T-cad and signal transduction pathway utilization by T-cad in VSMC are unknown. The present study examines the consequences of altered T-cad expression on VSMC for constitutive and insulin-induced Akt/mTOR axis signaling and contractile competence. Using viral vectors rat (WKY and SHR) and human aortic VSMCs were variously transduced with respect to T-cad-overexpression (Tcad+-VSMC) or T-cad-deficiency (shT-VSMC) and compared with their respective control transductants (E-VSMC or shC-VSMC). Tcad+-VSMC exhibited elevated constitutive levels of phosphorylated Akt(ser473), GSK3β(ser9), S6RP(ser235/236) and IRS-1(ser636/639). Total IRS-1 levels were reduced. Contractile machinery was constitutively altered in a manner indicative of reduced intrinsic contractile competence, namely decreased phosphorylation of MYPT1(thr696 or thr853) and MLC20(thr18/ser19), reduced RhoA activity and increased iNOS expression. Tcad+-VSMC-populated collagen lattices exhibited greater compaction which was due to increased collagen fibril packing/reorganization. T-cad+-VSMC exhibited a state of insulin insensitivity as evidenced by attenuation of the ability of insulin to stimulate Akt/mTOR axis signaling, phosphorylation of MLC20 and MYPT1, compaction of free-floating lattices and collagen fibril reorganization in unreleased lattices. The effects of T-cad-deficiency on constitutive characteristics and insulin responsiveness of VSMC were opposite to those of T-cad-overexpression. The study reveals novel cadherin-based modalities to modulate VSMC sensitivity to insulin through Akt/mTOR axis signaling as well as vascular function and tissue architecture through the effects on contractile competence and organization of extracellular matrix.

Keywords

Male, Myosin Light Chains, TOR Serine-Threonine Kinases, 616.07, Cadherins, Rats, Inbred WKY, Muscle, Smooth, Vascular, Rats, Up-Regulation, Glucose, Rats, Inbred SHR, Insulin Receptor Substrate Proteins, Animals, Humans, Insulin, RNA Interference, Phosphorylation, Proto-Oncogene Proteins c-akt, Cells, Cultured, Muscle Contraction, Signal Transduction, ddc: ddc:616.07

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Top 10%