Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell
Article . 2004
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cell
Article . 2004 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Cell
Article . 2005
versions View all 4 versions

Symplekin and xGLD-2 Are Required for CPEB-Mediated Cytoplasmic Polyadenylation

Authors: Barnard, Daron C.; Ryan, Kevin; Manley, James L.; Richter, Joel D.;

Symplekin and xGLD-2 Are Required for CPEB-Mediated Cytoplasmic Polyadenylation

Abstract

Cytoplasmic polyadenylation-induced mRNA translation is a hallmark of early animal development. In Xenopus oocytes, where the molecular mechanism has been defined, the core factors that control this process include CPEB, an RNA binding protein whose association with the CPE specifies which mRNAs undergo polyadenylation; CPSF, a multifactor complex that interacts with the near-ubiquitous polyadenylation hexanucleotide AAUAAA; and maskin, a CPEB and eIF4E binding protein whose regulation of initiation is governed by poly(A) tail length. Here, we define two new factors that are essential for polyadenylation. The first is symplekin, a CPEB and CPSF binding protein that serves as a scaffold upon which regulatory factors are assembled. The second is xGLD-2, an unusual poly(A) polymerase that is anchored to CPEB and CPSF even before polyadenylation begins. The identification of these factors has broad implications for biological process that employ polyadenylation-regulated translation, such as gametogenesis, cell cycle progression, and synaptic plasticity.

Related Organizations
Keywords

mRNA Cleavage and Polyadenylation Factors, Cytoplasm, DNA, Complementary, Sequence Homology, Amino Acid, Biochemistry, Genetics and Molecular Biology(all), Molecular Sequence Data, Membrane Proteins, Nuclear Proteins, Polynucleotide Adenylyltransferase, DNA-Directed RNA Polymerases, Xenopus Proteins, Polyadenylation, Xenopus laevis, Sequence Homology, Nucleic Acid, Oocytes, Animals, Female, Caenorhabditis elegans Proteins, Carrier Proteins, Cells, Cultured, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    300
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
300
Top 1%
Top 1%
Top 1%
hybrid