Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Brain Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Brain Research
Article . 2006 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Brain Research
Article . 2006
versions View all 2 versions

Expression of prokineticin receptors in mouse cultured astrocytes and involvement in cell proliferation

Authors: Yutaka, Koyama; Masafumi, Kiyo-oka; Masakazu, Osakada; Naotaka, Horiguchi; Norihito, Shintani; Yukio, Ago; Michiya, Kakuda; +2 Authors

Expression of prokineticin receptors in mouse cultured astrocytes and involvement in cell proliferation

Abstract

Effects of prokineticins (PKs), a novel family of bioactive peptides with a mitogenic action to endothelial cells of the endocrine gland and testis, on astrocytic functions were examined. Mouse cultured astrocytes expressed PK-R1 type PK receptors, while there was little expression of the PK-R2 type. PKs caused increases in astrocytic cytosolic Ca2+ levels and BrdU incorporation. Increases in Ca2+ levels by PK-2 were diminished by U73122 (a phospholipase C inhibitor). PK-induced BrdU incorporation was inhibited by U73122, GF109203 (a protein kinase C inhibitor) and PD98059 (a MEK/ERK inhibitor). These results indicate that PK receptors are expressed in astrocytes and regulate astrocytic proliferation.

Related Organizations
Keywords

Flavonoids, Dose-Response Relationship, Drug, Neuropeptides, Gene Expression, Embryo, Mammalian, Pyrrolidinones, Receptors, G-Protein-Coupled, Gastrointestinal Hormones, Mice, Animals, Newborn, Bromodeoxyuridine, Astrocytes, Cerebellum, Animals, Calcium, Vascular Endothelial Growth Factor, Endocrine-Gland-Derived, Enzyme Inhibitors, Estrenes, Cells, Cultured, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Average