Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochemical Pharmaco...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical Pharmacology
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Cloning and activity of a novel α-latrotoxin from red-back spider venom

Authors: Graudins, Andis; Little, Michelle J.; Pineda, Sandy S.; Hains, Peter G.; King, Glenn F.; Broady, Kevin W.; Nicholson, Graham M.;

Cloning and activity of a novel α-latrotoxin from red-back spider venom

Abstract

The venom of the European black widow spider Latrodectus tredecimguttatus (Theridiidae) contains several high molecular mass (110-140 kDa) neurotoxins that induce neurotransmitter exocytosis. These include a vertebrate-specific α-latrotoxin (α-LTX-Lt1a) responsible for the clinical symptoms of latrodectism and numerous insect-specific latroinsectoxins (LITs). In contrast, little is known about the expression of these toxins in other Latrodectus species despite the fact that envenomation by these spiders induces a similar clinical syndrome. Here we report highly conserved α-LTX, α-LIT and δ-LIT sequence tags in Latrodectus mactans, Latrodectus hesperus and Latrodectus hasselti venoms using tandem mass spectrometry, following bioassay-guided separation of venoms by liquid chromatography. Despite this sequence similarity, we show that the anti-α-LTX monoclonal antibody 4C4.1, raised against α-LTX-Lt1a, fails to neutralize the neurotoxicity of all other Latrodectus venoms tested in an isolated chick biventer cervicis nerve-muscle bioassay. This suggests that there are important structural differences between α-LTXs in theridiid spider venoms. We therefore cloned and sequenced the α-LTX from the Australian red-back spider L. hasselti (α-LTX-Lh1a). The deduced amino acid sequence of the mature α-LTX-Lh1a comprises 1180 residues (∼132kDa) with ∼93% sequence identity with α-LTX-Lt1a. α-LTX-Lh1a is composed of an N-terminal domain and a central region containing 22 ankyrin-like repeats. The presence of two furin cleavage sites, conserved with α-LTX-Lt1a, indicates that α-LTX-Lh1a is derived from the proteolytic cleavage of an N-terminal signal peptide and C-terminal propeptide region. However, we show that α-LTX-Lh1a has key substitutions in the 4C4.1 epitope that explains the lack of binding of the monoclonal antibody.

Keywords

1303 Biochemistry, Base Sequence, α-LTX-Lh1a, Neurotransmitter release, Molecular Sequence Data, Latroinsectotoxin, Spider Venoms, 540, Latrodectus, Gryllidae, Previous termlatrotoxin, 3004 Pharmacology, Toxicity Tests, Animals, Black Widow Spider, Female, Amino Acid Sequence, Cloning, Molecular, Muscle, Skeletal, Chickens

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 10%
bronze