Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochemical Pharmaco...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical Pharmacology
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions

Role of adenosine A3 receptors on CA1 hippocampal neurotransmission during oxygen–glucose deprivation episodes of different duration

Authors: PUGLIESE, ANNA MARIA; COPPI, ELISABETTA; R. Volpini; G. Cristalli; CORRADETTI, RENATO; L. S. Jeong; K. A. Jacobson; +1 Authors

Role of adenosine A3 receptors on CA1 hippocampal neurotransmission during oxygen–glucose deprivation episodes of different duration

Abstract

The role of adenosine A3 receptors in synaptic transmission under severe (7 min) and shorter (2-5 min) ischemic conditions, obtained by oxygen and glucose deprivation (OGD), was investigated in rat hippocampal slices. The effects of selective A3 agonists or antagonists were examined on field excitatory postsynaptic potentials (fEPSPs) extracellularly recorded at the dendritic level of the CA1 pyramidal region. The novel, selective A3 antagonist LJ1251 ((2R,3R,4S)-2-(2-chloro-6-(3-iodobenzylamino)-9H-purin-9-yl)tetrahydrothiophene-3,4-diol, 0.1-10 nM) protected hippocampal slices from irreversible fEPSP depression induced by severe OGD and prevented or delayed the appearance of anoxic depolarization. Similar results were obtained when severe OGD was carried out with a long, receptor-desensitizing exposure to various selective A3 agonists: 5'-N-methylcarboxamidoadenosine derivatives Cl-IB-MECA (N6-(3-iodobenzyl)-2-chloro), VT72 (N6-methoxy-2-phenylethynyl), VT158 (N6-methoxy-2-phenylethynyl), VT160 (N6-methoxy-2-(2-pyridinyl)-ethynyl), and VT163 (N6-methoxy-2-p-acetylphenylethynyl) and AR132 (N6-methyl-2-phenylethynyladenosine). The selective A3 antagonist MRS1523 (3-propyl-6-ethyl-5-[(ethylthio)carbonyl]-2-phenyl-4-propyl-3-pyridine carboxylate, 100 nM) reduced fEPSP depression evoked by 2-min OGD and induced a faster recovery of fEPSP amplitude after 5-min OGD. Similar results were obtained for 2- or 5-min OGD applied in the presence of each of the A3 agonists tested. Shorter exposure to A3 agonists significantly delayed the recovery of fEPSP amplitude after 5-min OGD. This indicates that A3 receptors, stimulated by selective A3 agonists, undergo desensitization during OGD. It is inferred that CA1 hippocampal A3 receptors stimulated by adenosine released during brief ischemia (2 and 5 min) might exert A1-like protective effects on neurotransmission. Severe ischemia would transform the A3 receptor-mediated effects from protective to injurious.

Keywords

Male, Neurons, Time Factors, Molecular Structure, Receptor, Adenosine A3, Adenosine A3 Receptor Antagonists, Excitatory Postsynaptic Potentials, Hippocampus, Hypoglycemia, Rats, Oxygen, Glucose, Adenosine A3 Receptor Agonists, Purines; G protein-coupled receptors; Cerebral ischemia; Hippocampal slices; Field EPSP; Desensitization, Animals, Hypoxia, Brain

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    65
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
65
Top 10%
Top 10%
Top 10%
bronze