Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Universidade de Lisb...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Blood Cells Molecules and Diseases
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions

VCAM1, HMOX1 and NOS3 differential endothelial expression may impact sickle cell anemia vasculopathy

Authors: Silva, Marisa; Coelho, Andreia; Vargas, Sofia; Faustino, Paula;

VCAM1, HMOX1 and NOS3 differential endothelial expression may impact sickle cell anemia vasculopathy

Abstract

Endothelial dysfunction plays a major role in sickle cell anemia (SCA) systemic vasculopathy, with upregulation of adhesion molecules (e.g., VCAM-1), decreased nitric oxide bioavailability, and oxidative stress. We aimed to assess the modulation role of pro-inflammatory and pro-oxidative stimuli on endothelial VCAM1, NOS3, and HMOX1 expression. We also evaluated the effect of the main SCA therapeutic agent, hydroxyurea, on that modulation. Our results showed that two VCAM1 promoter haplotypes, we previously associated with pediatric cerebral vasculopathy and severe hemolysis in SCA, increased promoter activity in TNF-α-stimulated transfected EA.hy926 and HBEC cell lines, consistent with a higher VCAM1 expression in macro and microvascular settings. In non-transfected cells, we also observed TNF-α-induced VCAM1 overexpression as well as heme-induced overexpression of HMOX1 in both cell models. Heme did not affect VCAM1 nor NOS3 expression and the latter was also not affected by TNF-α stimulus. Hydroxyurea treatment lowered TNF-induced VCAM1 and NOS3 expression but did not affect heme-induced HMOX1 expression. These data further indicate that VCAM1 haplotypes we studied lead to higher VCAM1 expression affecting not only cerebral but also systemic vasculopathy risk. The differential endothelial expression of VCAM1, NOS3, and HMOX1 also confirms their genetic modulation role in SCA systemic vasculopathy.

Country
Portugal
Keywords

Nitric Oxide Synthase Type III, Vascular Cell Adhesion Molecule-1, Heme, Anemia, Sickle Cell, Hemolysis, VCAM1 promoter haplotypes, Haplotypes, TNF-α, Vascular endothelium, Sickle cell anemia, Humans, Hydroxyurea, Child, Heme Oxygenase-1

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%