Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochemical and Biop...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochemical and Biophysical Research Communications
Article . 2014 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions

Priming of Toll-like receptor 4 pathway in mesenchymal stem cells increases expression of B cell activating factor

Authors: Hua Jiang; Hao Yan; Mengyao Wu; Zack Z. Wang; Tong Chen; Yan Yuan;

Priming of Toll-like receptor 4 pathway in mesenchymal stem cells increases expression of B cell activating factor

Abstract

Mesenchymal stem cells (MSCs) can be polarized into two distinct populations, MSC1 and MSC2, by activation of different Toll-like receptors (TLRs). TLR4-primed MSC1 expressed proinflammatory factors, whereas TLR3-primed MSC2 expressed suppressive factors. However, little is known about the function of TLRs on B lymphocyte-related immune modulation. In this study, we investigated the expression of B cell activating factor (BAFF), a member of the tumor necrosis factor ligand superfamily with notable stimulating activity on B cells, in human MSCs (hMSCs) and in murine MSCs (mMSCs) after activation of TLRs. BAFF was increasingly expressed in presence of TLR4 agonist (lipopolysaccharide, LPS), while TLR2 agonist (Zymosan) and TLR3-agonist (polyinocinic-polycytidykic acid, poly I:C) had no effect on BAFF expression. In addition, we demonstrated that signaling pathways of NF-κB, p38 MAPK, and JNK were involved in TLR4-primed BAFF expression. Our results suggested that TLR4 and downstream pathways in MSCs exert an important function in B lymphocyte-related immune regulation. Further defining a homogeneous population of MSCs should provide insight into MSC-based immune-modulating therapy.

Related Organizations
Keywords

Adult, Lipopolysaccharides, LPS, Biophysics, Pro-inflammatory, Biochemistry, Mice, B-Cell Activating Factor, Animals, Humans, TLR4, Molecular Biology, Cells, Cultured, Mesenchymal stem cell, Mice, Inbred BALB C, NF-kappa B, Zymosan, Cell Differentiation, Mesenchymal Stem Cells, Cell Biology, Middle Aged, Toll-Like Receptor 2, Toll-Like Receptor 4, Poly I-C, BAFF, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    44
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
44
Top 10%
Top 10%
Top 10%
hybrid