Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Salicylic acid resistance is conferred by a novel YRR1 mutation in Saccharomyces cerevisiae

Authors: Naohiko, Kodo; Toshiro, Matsuda; Syuichi, Doi; Hiroshi, Munakata;

Salicylic acid resistance is conferred by a novel YRR1 mutation in Saccharomyces cerevisiae

Abstract

Yeast cells can extrude intracellular drugs through membrane-associated efflux pumps, such as ATP-binding cassette (ABC) transporters and members of the major facilitator superfamily. Gene expression of drug efflux pumps is regulated by several transcription factors involved in pleiotropic drug resistance (PDR). Salicylic acid (SA) possesses weak antifungal activity. Although the excretion mechanisms of some antifungal drugs have been revealed, the mechanism of SA extrusion remains unclear. To elucidate the mechanism of SA excretion, we screened SA-resistant mutants from random mutagenized Saccharomyces cerevisiae BY4741 cells. We successfully isolated 60 SA-resistant clones (KinSal001-060). KinSal052, one of the strongest SA-resistant clones, also exhibited resistance to 4-nitroquinoline-1-oxide and cycloheximide, indicating that it acquired the PDR phenotype. We identified a novel mutation in YRR1 conferring SA resistance to KinSal052. YRR1 encodes a Zn(II)2Cys6-type zinc-finger transcription factor that reportedly activates gene expression involved in PDR. Yeast cells carrying the yrr1 allele (yrr1-52) activated expression of several efflux pump-encoding genes, including YOR1, SNQ2, AZR1, and FLR1. These results suggested that SA resistance in KinSal052 is conferred by the overexpression of efflux pumps constitutively activated by the mutant form of Yrr1p.

Related Organizations
Keywords

Antifungal Agents, Saccharomyces cerevisiae Proteins, Genes, Fungal, Molecular Sequence Data, Membrane Transport Proteins, Organic Anion Transporters, Saccharomyces cerevisiae, 4-Nitroquinoline-1-oxide, Drug Resistance, Multiple, Fungal, Gene Expression Regulation, Fungal, Mutation, ATP-Binding Cassette Transporters, Amino Acid Sequence, Cycloheximide, Salicylic Acid, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Average