Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochimica et Biophy...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

KLF1 stabilizes GATA-1 and TAL1 occupancy in the human β-globin locus

Authors: Yujin, Kang; Yea Woon, Kim; Jangmi, Yun; Jongo, Shin; AeRi, Kim;

KLF1 stabilizes GATA-1 and TAL1 occupancy in the human β-globin locus

Abstract

KLF1 is an erythroid specific transcription factor that binds to regulatory regions of erythroid genes. Binding sites of KLF1 are often found near binding sites of GATA-1 and TAL1. In the β-globin locus, KLF1 is required for forming active chromatin structure, although its role is unclear. To explore the role of KLF1 in transcribing the human γ-globin genes, we stably reduced the expression of KLF1 in erythroid K562 cells, compromising its association in the β-globin locus. The γ-globin transcription was reduced with disappearance of active chromatin structure of the locus in the KLF1 knockdown cells. Interestingly, GATA-1 and TAL1 binding was reduced in the β-globin locus, even though their expressions were not affected by KLF1 knockdown. The KLF1-dependent GATA-1 and TAL1 binding was observed in the adult locus transcribing the β-globin gene and in several erythroid genes, where GATA-1 occupancy is independent from TAL1. These results indicate that KLF1 plays a role in facilitating and/or stabilizing GATA-1 and TAL1 occupancy in the erythroid genes, contributing to the generation of active chromatin structure such as histone acetylation and chromatin looping.

Related Organizations
Keywords

Binding Sites, Kruppel-Like Transcription Factors, Acetylation, beta-Globins, Regulatory Sequences, Nucleic Acid, Chromatin, Histones, Proto-Oncogene Proteins, Basic Helix-Loop-Helix Transcription Factors, Humans, GATA1 Transcription Factor, gamma-Globins, K562 Cells, T-Cell Acute Lymphocytic Leukemia Protein 1, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Average
Top 10%