Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Florid...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Regulation of αENaC expression by the circadian clock protein Period 1 in mpkCCDc14 cells

Authors: VA Medical Center, Gainesville, FL, USA ( host institution ); Gumz, Michelle L. ( author ); Cheng, Kit-Yan ( author ); Lynch, I. Jeanette ( author ); Stow, Lisa R. ( author ); Greenlee, Megan M. ( author ); Cain, Brian D. ( author ); +1 Authors

Regulation of αENaC expression by the circadian clock protein Period 1 in mpkCCDc14 cells

Abstract

The epithelial sodium channel (ENaC) mediates the fine-tuned regulation of external sodium (Na) balance. The circadian clock protein Period 1 (Per1) is an aldosterone-induced gene that regulates mRNA expression of the rate-limiting alpha subunit of ENaC (αENaC). In the present study, we examined the effect of Per1 on αENaC in the cortex, the site of greatest ENaC activity in the collecting duct, and examined the mechanism of Per1 action on αENaC. Compared to wild type mice, Per1 knockout mice exhibited a 50% reduction of steady state αENaC mRNA levels in the cortex. Importantly, siRNA-mediated knockdown of Per1 decreased total αENaC protein levels in mpkCCD(c14) cells, a widely used model of the murine cortical collecting duct (CCD). Per1 regulated basal αENaC expression and participated in the aldosterone-mediated regulation of αENaC in mpkCCD(c14) cells. Because circadian clock proteins mediate their effects as part of multi-protein complexes at E-box response elements in the promoters of target genes, the ability of Per1 to interact with these sequences from the αENaC promoter was tested. For the first time, we show that Per1 and Clock are present at an E-box response element found in the αENaC promoter. Together these data support an important role for the circadian clock protein Per1 in the direct regulation of αENaC transcription and have important implications for understanding the role of the circadian clock in the regulation of renal function.

Country
United States
Keywords

Mice, Knockout, Transcription, Genetic, Circadian rhythm, Sodium channel, E-box, Period Circadian Proteins, Kidney, Models, Biological, Cell Line, E-Box Elements, Mice, Gene Expression Regulation, Animals, Kidney Tubules, Collecting, Epithelial Sodium Channels, Promoter Regions, Genetic, Aldosterone, Cortical collecting duct, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    72
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
72
Top 10%
Top 10%
Top 10%
Green
bronze