Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochimica et Biophy...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimica et Biophysica Acta (BBA) - General Subjects
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

A novel retinoic acid analogue, 7-hydroxy retinoic acid, isolated from cyanobacteria

Authors: Hideaki Uchida; Tomoharu Sano; Kunimitsu Kaya; Fujio Shiraishi;

A novel retinoic acid analogue, 7-hydroxy retinoic acid, isolated from cyanobacteria

Abstract

All-trans retinoic acid (RA) is a low-molecular compound derived from vitamin A. It induces events in various ways by binding with the retinoic acid receptor (RAR), a nuclear receptor, in animal cells. RA and its metabolites have been found in animal tissues. In this paper, we report a novel RA analogue found in cyanobacterial cells, describe the method for its isolation, and compare its photo-stability with that of all-trans RA.The new A analogue was extracted from cells of Microcystis aeruginosa and Spirulina sp. and fractionated by high-performance liquid chromatography. The analogue was analysed using a yeast two-hybrid assay method to measure in vitro RAR-agonistic activity. Liquid chromatography-mass spectrometry/mass spectrometry analyses was performed to elucidate the chemical structure of this RA analogue.The results of the analysis of the fragments revealed that the novel RA analogue was 7-hydroxy RA. The yields from 3.5 μg (4.5% of the total RAR-agonistic activity of Spirulina sp. cells) of 7-hydroxy RA was a mixture of 4 isomers due to cis-trans isomerisation coupled with keto-enol tautomerism; its relative RAR agonistic activity was 0.49 ± 0.01 (n=3) when the activity of all trans RA was set up to 1.00. Under fluorescent light, the mixture of 7-hydroxy RA isomers was more stable than all- trans RA.We isolated a novel RAR-activating compound, 7-hydroxy RA, from cyanobacteria.7-hydroxy RA is more stable than all-trans RA under UV-A.

Keywords

Microcystis, Receptors, Retinoic Acid, Two-Hybrid System Techniques, Spirulina, Humans, Tretinoin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Average
Top 10%