Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochimica et Biophy...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochimica et Biophysica Acta (BBA) - Bioenergetics
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochimica et Biophysica Acta (BBA) - Bioenergetics
Article . 2008
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimica et Biophysica Acta (BBA) - Bioenergetics
Article . 2008 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Mitochondrial biogenesis in fast skeletal muscle of CK deficient mice

Authors: Anne Garnier; Renée Ventura-Clapier; Vladimir Veksler; Anika Vaarmann; I. Momken; Dominique Fortin;

Mitochondrial biogenesis in fast skeletal muscle of CK deficient mice

Abstract

Creatine kinase (CK) is a phosphotransfer kinase that catalyzes the reversible transfer of a phosphate moiety between ADP and creatine and that is highly expressed in skeletal muscle. In fast glycolytic skeletal muscle, deletion of the cytosolic M isoform of CK in mice (M-CK-/-) leads to a massive increase in the oxidative capacity and of mitochondrial volume. This study was aimed at investigating the transcriptional pathways leading to mitochondrial biogenesis in response to CK deficiency. Wild type and M-CK-/- mice of eleven months of age were used for this study. Gastrocnemius muscles of M-CK-/- mice exhibited a dramatic increase in citrate synthase (+120%) and cytochrome oxidase (COX, +250%) activity, and in mitochondrial DNA (+60%), showing a clear activation of mitochondrial biogenesis. Similarly, mRNA expression of the COXI (mitochondria-encoded) and COXIV (nuclear-encoded) subunits were increased by +103 and +94% respectively. This was accompanied by an increase in the expression of the nuclear respiratory factor (NRF2alpha) and the mitochondrial transcription factor (mtTFA). Expression of the co-activator PGC-1alpha, a master gene in mitochondrial biogenesis was not significantly increased while that of PGC-1beta and PRC, two members of the same family, was moderately increased (+45% and +55% respectively). While the expression of the modulatory calcineurin-interacting protein 1 (MCIP1) was dramatically decreased (-68%) suggesting inactivation of the calcineurin pathway, the metabolic sensor AMPK was activated (+86%) in M-CK-/- mice. These results evidence that mitochondrial biogenesis in response to a metabolic challenge exhibits a unique pattern of regulation, involving activation of the AMPK pathway.

Keywords

AMPK, Transcription, Genetic, Adenylate Kinase, Biophysics, Skeletal muscle, Energy metabolism, Cell Biology, Biochemistry, Mitochondria, Muscle, Mice, Inbred C57BL, Mice, CK-KO mice, Animals, Muscle, Skeletal, Transcription, Creatine Kinase, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Average
Average
hybrid