Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ American Journal Of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
American Journal Of Pathology
Article . 2013 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
American Journal Of Pathology
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
American Journal Of Pathology
Article . 2013
License: CC BY NC ND
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions

Loss of β-Catenin Induces Multifocal Periosteal Chondroma-Like Masses in Mice

Authors: Cantley, Leslie; Saunders, Cheri; Guttenberg, Marta; Candela, Maria Elena; Ohta, Yoichi; Yasuhara, Rika; Kondo, Naoki; +14 Authors

Loss of β-Catenin Induces Multifocal Periosteal Chondroma-Like Masses in Mice

Abstract

Osteochondromas and enchondromas are the most common tumors affecting the skeleton. Osteochondromas can occur as multiple lesions, such as those in patients with hereditary multiple exostoses. Unexpectedly, while studying the role of β-catenin in cartilage development, we found that its conditional deletion induces ectopic chondroma-like cartilage formation in mice. Postnatal ablation of β-catenin in cartilage induced lateral outgrowth of the growth plate within 2 weeks after ablation. The chondroma-like masses were present in the flanking periosteum by 5 weeks and persisted for more than 6 months after β-catenin ablation. These long-lasting ectopic masses rarely contained apoptotic cells. In good correlation, transplants of β-catenin-deficient chondrocytes into athymic mice persisted for a longer period of time and resisted replacement by bone compared to control wild-type chondrocytes. In contrast, a β-catenin signaling stimulator increased cell death in control chondrocytes. Immunohistochemical analysis revealed that the amount of detectable β-catenin in cartilage cells of osteochondromas obtained from hereditary multiple exostoses patients was much lower than that in hypertrophic chondrocytes in normal human growth plates. The findings in our study indicate that loss of β-catenin expression in chondrocytes induces periosteal chondroma-like masses and may be linked to, and cause, the persistence of cartilage caps in osteochondromas.

Keywords

Osteochondroma, Indoles, Integrases, Acid Phosphatase, Apoptosis, Bone Neoplasms, Choristoma, Pathology and Forensic Medicine, Isoenzymes, Mice, Cartilage, Chondrocytes, Periosteum, Oximes, In Situ Nick-End Labeling, Animals, Humans, Growth Plate, Collagen Type II, Chondroma, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Average
Top 10%
hybrid