Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biophysical Reviewsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biophysical Reviews
Article . 2019 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Interacting cogs in the machinery of the renin angiotensin system

Authors: Lizelle Lubbe; Edward D Sturrock;

Interacting cogs in the machinery of the renin angiotensin system

Abstract

Somatic angiotensin converting enzyme (sACE) is well-known for its role in blood pressure regulation and consequently, ACE inhibitors are widely prescribed for the treatment of hypertension. More than 60 years after the discovery of sACE, however, the molecular details of its substrate hydrolysis and inhibition are still poorly understood. Isothermal titration calorimetry, molecular dynamics simulations and fine epitope mapping suggest that substrate or inhibitor binding triggers a hinging motion between the two subdomains of each domain. Ligand binding to one domain further induces a conformational change in sACE to negatively affect the second domain's function and can also cause dimerization between sACE molecules. This has been linked to an increase in sACE expression via intracellular signalling. Inhibitor-induced dimerization could thus decrease the efficacy of hypertension treatment. At present, the only structural information available for sACE are crystal structures of the truncated domains in the closed conformation due to the presence of ligands. These structures do not provide any information regarding the open active site conformation prior to ligand binding, the relative orientation of the two domains in full-length sACE, or the dimerization interface. To guarantee effective therapeutic intervention, further research is required to investigate the hinging, negative cooperativity and dimerization of sACE. This review describes our current understanding of these interactions and proposes how recent advances in cryo-electron microscopy could enable structural elucidation of their mechanisms.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
bronze