Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Structural Chemistryarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2021
Data sources: PubMed Central
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Structural Chemistry
Article . 2021 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 4 versions

Combination and tricombination therapy to destabilize the structural integrity of COVID-19 by some bioactive compounds with antiviral drugs: insights from molecular docking study

Authors: El-Mageed, H. R. Abd; Abdelrheem, Doaa A.; Ahmed, Shimaa A.; Rahman, Aziz A.; Elsayed, Khaled N. M.; Ahmed, Sayed A.; EL-Bassuony, Ashraf A.; +1 Authors

Combination and tricombination therapy to destabilize the structural integrity of COVID-19 by some bioactive compounds with antiviral drugs: insights from molecular docking study

Abstract

Recently, the SARS-CoV-2 (COVID-19) pandemic virus has been spreading throughout the world. Until now, no certified drugs have been discovered to efficiently inhibit the virus. The scientists are struggling to find new safe bioactive inhibitors of this deadly virus. In this study, we aim to find antagonists that may inhibit the activity of the three major viral targets: SARS-CoV-2 3-chymotrypsin-like protease (6LU7), SARS-CoV-2 spike protein (6VYB), and a host target human angiotensin-converting enzyme 2 (ACE2) receptor (1R42), which is the entry point for the viral encounter, were studied with the prospects of identifying significant drug candidate(s) against COVID-19 infection. Then, the protein stability produced score of less than 0.6 for all residues of all studied receptors. This confirmed that these receptors are extremely stable proteins, so it is very difficult to unstable the stability of these proteins through utilizing individual drugs. Hence, we studied the combination and tricombination therapy between bioactive compounds which have the best binding affinity and some antiviral drugs like chloroquine, hydroxychloroquine, azithromycin, simeprevir, baloxavir, lopinavir, and favipiravir to show the effect of combination and tricombination therapy to disrupt the stability of the three major viral targets that are mentioned previously. Also, ADMET study suggested that most of all studied bioactive compounds are safe and nontoxic compounds. All results confirmed that caulerpin can be utilized as a combination and tricombination therapy along with the studied antiviral drugs for disrupting the stability of the three major viral receptors (6LU7, 6VYB, and 1R42).The online version contains supplementary material available at 10.1007/s11224-020-01723-5.

Keywords

Physical and Theoretical Chemistry, Condensed Matter Physics, Original Research

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Average
Top 10%
Green
hybrid