Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Molecular...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular Histology
Article . 2015 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Altered distribution of HMGB1 in the periodontal ligament of periostin-deficient mice subjected to Waldo’s orthodontic tooth movement

Authors: Bo Liu; Jian Cui; Juan Du; Jing Sun; Xiuchun Han; Juan Li; Minqi Li; +6 Authors

Altered distribution of HMGB1 in the periodontal ligament of periostin-deficient mice subjected to Waldo’s orthodontic tooth movement

Abstract

Periostin is essential for the integrity and function of the periodontal ligament (PDL), and periostin knockout is related to an enhanced inflammatory status in PDL. High mobility group box 1 (HMGB1), a late inflammatory cytokine, is up-regulated in PDL cells in response to mechanical stress. This study aimed to investigate the effect of periostin deficiency (Pn-/-) on HMGB1 expression in PDL during orthodontic tooth movement. We used 8-week-old male mice homozygous for the disrupted periostin gene and their wild-type (WT) littermates. Tooth movement was performed according to Waldo's method, in which 0.5-mm-thick elastic bands were inserted between the first and second upper molars of anesthetized mice. After 3 days of mechanical loading, mice were fixed by transcardial perfusion of 4% paraformaldehyde in phosphate buffer, and the maxilla was extracted for histochemical analyses. Compared with the WT group, Pn-/- mice showed higher basal expression of HMGB1 in the absence of mechanical loading. Following 3 days of orthodontic tooth movement, the PDL in the compression side of both groups was almost replaced by cell-free hyaline zones, and Pn-/- mice showed a much wider residual PDL than WT mice. In the tension side, the number of HMGB1-positive cells in PDL in both Pn-/- and WT groups increased remarkably without a significant difference between the two groups. Our findings suggest an inhibitory effect of periostin on HMGB1 production by PDL and confirmed the critical role of periostin in integrity of PDL collagen fibrils during orthodontic tooth movement, although mechanical loading is the predominant stimulant of HMGB1 expression relative to periostin deficiency.

Keywords

Male, Mice, Knockout, Gene Expression Regulation, Tooth Movement Techniques, Organ Specificity, Periodontal Ligament, Animals, Gene Expression, HMGB1 Protein, Cell Adhesion Molecules, Biomechanical Phenomena

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Average
Top 10%