The plastidial starch phosphorylase from rice endosperm: catalytic properties at low temperature
pmid: 26748915
The plastidial starch phosphorylase from rice endosperm: catalytic properties at low temperature
Consistent with its essential role in starch biosynthesis at low temperatures, the plastidial starch phosphorylase from rice endosperm is highly active at low temperature. Moreover, contrary to results on other higher plant phosphorylases, the L80 peptide, a domain unique to plant phosphorylases and not present in orthologous phosphorylases from other organisms, is not involved in enzyme catalysis. Starch phosphorylase (Pho) is an essential enzyme in starch synthesis in developing rice endosperm as the enzyme plays a critical role in both the early and maturation phases of starch granule formation especially at low temperature. In this study, we demonstrated that the rice Pho1 maintains substantial enzyme activity at low temperature (<20 °C) and its substrate affinities for branched α-glucans and glucose-1-phosphate were significantly increased at the lower reaction temperatures. Under sub-saturating substrate conditions, OsPho1 displayed higher catalytic activities at 18 °C than at optimal 36 °C, supporting the prominent role of the enzyme in starch synthesis at low temperature. Removal of the highly charged 80-amino acid sequence L80 peptide, a region found exclusively in the plastidial Pho1 of higher plants, did not significantly alter the catalytic and regulatory properties of OsPho1 but did affect heat stability. Our kinetic results support the low temperature biosynthetic role of OsPho1 in rice endosperm and indicate that its L80 region is unlikely to have a direct enzymatic role but provides stability of the enzyme under heat stress.
- Washington State University United States
- Assam Agricultural University India
- Washington State University United States
- Kyushu University Japan
Protein Domains, Temperature, Oryza, Starch Phosphorylase, Plastids, Catalysis, Endosperm, Plant Proteins
Protein Domains, Temperature, Oryza, Starch Phosphorylase, Plastids, Catalysis, Endosperm, Plant Proteins
5 Research products, page 1 of 1
- 2016IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).35 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
