Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Molecular...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular Medicine
Article . 2004 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Downregulation of Skp2 and p27/Kip1 synergistically induces apoptosis in T98G glioblastoma cells

Authors: Frank McCormick; Sang Hyun Lee;

Downregulation of Skp2 and p27/Kip1 synergistically induces apoptosis in T98G glioblastoma cells

Abstract

S-phase kinase associated protein (Skp) 2 is an F-box protein required for substrate recognition of the SCF(Skp2) ubiquitin ligase complex. Skp2 is often overexpressed in transformed cells and in various types of tumors. Downregulation or inhibition of Skp2 inhibits growth of breast cancer cells and small-cell lung carcinoma cells. We downregulated Skp2 in T98G glioblastoma cells using small interfering RNA (siRNA). Downregulation induced p27 and caused growth arrest and apoptosis. Downregulation of both Skp2 and p27 increased apoptosis synergistically. Cyclin E levels and cyclin E-CDK2 kinase activity increased dramatically when both Skp2 and p27 were downregulated. Coincidently, Bcl-2 but not Bcl-xL expression decreased, and caspase-3 was activated. Inhibition of cyclin E-CDK2 kinase activity by forced expression of p21 reversed these effects. Moreover, stable expression of Bcl-2 also abrogated apoptosis induced by downregulation of Skp2 and p27. We suggest that Skp2 in tumor cells suppresses apoptosis through Bcl-2 expression, potentially through regulation of cyclin E-CDK2 activity.

Keywords

Caspase 3, Cyclin-Dependent Kinase 2, Intracellular Signaling Peptides and Proteins, bcl-X Protein, Down-Regulation, Apoptosis, Central Nervous System Neoplasms, Proto-Oncogene Proteins c-bcl-2, Caspases, Cyclin E, CDC2-CDC28 Kinases, Tumor Cells, Cultured, Humans, Carrier Proteins, Glioblastoma, Growth Substances, S-Phase Kinase-Associated Proteins, Cyclin-Dependent Kinase Inhibitor p27, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    53
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
53
Top 10%
Top 10%
Top 10%
Related to Research communities
Cancer Research