Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Molecular...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular Evolution
Article . 1991 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Drosophila fat body protein P6 and alcohol dehydrogenase are derived from a common ancestral protein

Authors: L, Rat; M, Veuille; J A, Lepesant;

Drosophila fat body protein P6 and alcohol dehydrogenase are derived from a common ancestral protein

Abstract

Drosophila melanogaster alcohol dehydrogenase is an example of convergent evolution: it is not related to the ADHs of other organisms, but to short-chain dehydrogenases, which until now have been found only in bacteria and in mammalian steroid hormone metabolism. We present evidence that the Drosophila ADH is phylogenetically more closely related to P6, another highly expressed protein from the fat body of Drosophila, than it is to the short-chain dehydrogenases. The polypeptide sequence of P6 was inferred from DNA sequence analysis. Both ADH and P6 polypeptides have retained a high structural similarity with respect to the Chou-Fasman prediction of secondary structure and hydropathy. P6 is also homologous to the 25-kd protein from the fat body of Sarcophaga peregrina, whose sequence we have reexamined. The evolution of the P6-ADH family of proteins is characterized by a dramatic increase in the methionine content of P6. Methionine accounts for 20% of P6 amino acids. This is in contrast with the absence of this amino acid in mature ADH. There is evidence that P6 and the 25-kd protein have undergone a parallel and independent enrichment in methionine. When corrected for this, the rate of amino acid replacement shows that the P6-25-kd lineage diverged from insect ADH shortly before the divergence of the ADH gene (Adh) from its 3'-duplication (Adh-dup).

Keywords

Base Sequence, Protein Conformation, Fat Body, Molecular Sequence Data, Restriction Mapping, Alcohol Dehydrogenase, Proteins, DNA, Drosophila melanogaster, Sequence Homology, Nucleic Acid, Animals, Drosophila Proteins, Insect Proteins, Amino Acid Sequence, Amino Acids, Codon, Sequence Alignment

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Average
Top 10%
Top 10%