Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Mammalian Genomearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mammalian Genome
Article . 1993 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Mammalian Genome
Article . 1994
versions View all 2 versions

The genetic map around the tail kinks (tk) locus on mouse Chromosome 9

Authors: Kenji Imai; Rudi Balling; Sharyl J. Nass; Merve Olowson;

The genetic map around the tail kinks (tk) locus on mouse Chromosome 9

Abstract

Tail kinks (tk) is a classical mouse skeletal mutation, located on Chromosome (Chr) 9. As the first step for the positional cloning of the tk gene, we have established a genetic map of a region surrounding the tk locus by generating a backcross segregating for tk. From this backcross, 1004 progeny were analyzed for the coat-color phenotype of the proximally located dilute (d) gene and for the distally flanking microsatellite marker, D9Mit12. Fifty-six recombinants between d and tk and 75 recombinants between tk and D9Mit12 were identified, completing a panel of 130 recombinants including one double recombinant. This panel allowed us to map five microsatellite loci as well as d and Mod-1 with respect to tk. We show that one of the microsatellite markers mapped, D9Mit9, does not recombine at all with tk in our backcross. This indicates that the D9Mit9 locus will serve as a good starting point for a chromosomal walk to the tk gene.

Keywords

Male, Tail, Polymorphism, Genetic, Genotype, Genetic Linkage, Chromosome Mapping, Polymerase Chain Reaction, Mice, Phenotype, Haplotypes, Mutation, Animals, Female, Cloning, Molecular, Crosses, Genetic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average