Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Humangenetikarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Humangenetik
Article . 1975 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Humangenetik
Article . 1975
versions View all 2 versions

First determination of the isozyme patterns of phosphoglycerate mutases (E.C. 2.7.5.3) and phosphoglycerate kinases (E.C. 2.7.2.3) in human tissues

Authors: R A, Kamel; K, Berg; F, Schwarzfischer; H, Wischerath;

First determination of the isozyme patterns of phosphoglycerate mutases (E.C. 2.7.5.3) and phosphoglycerate kinases (E.C. 2.7.2.3) in human tissues

Abstract

We present in this paper the first report about identification of several fractions of phosphoglycerate mutase (PGlyM) activity using starch gel electrophoresis and two different buffer systems. A typical muscle form of PGlyM was detected. It is also shown that isozymes of phosphoglycerate kinase (PGK) can be separated through the buffer system used by Spencer et al; (1964) for the phosphogluco mutase.

Related Organizations
Keywords

Isoenzymes, Phosphoglycerate Kinase, Muscles, Electrophoresis, Starch Gel, Phosphotransferases, Humans, Buffers, Diphosphoglyceric Acids

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Average
Top 10%
Average