Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genomicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genomics
Article . 1996 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genomics
Article . 1997
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 1996
Data sources: IRIS Cnr
versions View all 3 versions

The Chromosome Localization and the HCF Repeats of the Human Host Cell Factor Gene (HCFC1) Are Conserved in the Mouse Homologue

Authors: Frattini Annalisa; Chatterjee Aurobindo; Faranda Sara; Sacco Maria Grazia; Villa Anna; Herman Gail E; Vezzoni Paolo;

The Chromosome Localization and the HCF Repeats of the Human Host Cell Factor Gene (HCFC1) Are Conserved in the Mouse Homologue

Abstract

The gene encoding the human host cell factor (HCFC1) has recently been cloned and mapped to Xq28. HCFC1 codes for a family of related polypeptides that apparently arise from posttranslational processing. Six extremely conserved 19-amino-acid (aa)long motifs, unique to HCFC1 and located in the middle of the protein, could play a role in this processing or could be instrumental to the physiological role of the protein. Aternatively, these repeats could have arisen from recent duplications and may not have any specific function. To resolve this issue, we cloned the homologous region from the mouse HCFC1 gene and demonstrated that the 19-aa motifs are extremely conserved in sequence, number, and genomic organization, while the "linker" region between the third and fourth repeat is not. This suggests an important function for these repeats. In addition, by RT-PCR analysis of human RNA and comparison to the human genomic sequence, an alternative transcript including a 44-aa in-frame insertion, deriving from the 3' end of intron 18, was found. The significance of this alternative transcript is unknown, since it was not detectable in the mouse. The mouse HCFC1 gene maps to a region syntenic to Xq28, and, as in human, is in close proximity to the Renin-binding protein gene, in a 100-kb region also including the Licam and Vasopressin receptor type 2 genes.

Country
Italy
Keywords

X Chromosome, Sequence Homology, Amino Acid, Molecular Sequence Data, Chromosome Mapping, Proteins, Mice, Animals, Humans, Amino Acid Sequence, Chromosomes, Artificial, Yeast, Host Cell Factor C1, Conserved Sequence, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Average
Average
gold