Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 2002
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 2002 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 3 versions

SEK1/MKK4-Mediated SAPK/JNK Signaling Participates in Embryonic Hepatoblast Proliferation via a Pathway Different from NF-κB-Induced Anti-Apoptosis

Authors: Hiroyuki Arai; Toshiaki Katada; Shinya Ohata; Tomomi Watanabe; Nao Shimizu; Toshifumi Matsuyama; Teiji Wada; +15 Authors

SEK1/MKK4-Mediated SAPK/JNK Signaling Participates in Embryonic Hepatoblast Proliferation via a Pathway Different from NF-κB-Induced Anti-Apoptosis

Abstract

Mice lacking the stress-signaling kinase SEK1 die from embryonic day 10.5 (E10.5) to E12.5. Although a defect in liver formation is accompanied with the embryonic lethality of sek1(-/-) mice, the mechanism of the liver defect has remained unknown. In the present study, we first produced a monoclonal antibody specifically recognizing murine hepatoblasts for the analysis of liver development and further investigated genetic interaction ofsek1 with tumor necrosis factor-alpha receptor 1 gene (tnfr1) and protooncogene c-jun, which are also responsible for liver formation and cell apoptosis. The defective liver formation in sek1(-/-) embryos was not protected by additionaltnfr1 mutation, which rescues the embryonic lethality of mice lacking NF-kappaB signaling components. There was a progressive increase in the hepatoblast cell numbers of wild-type embryos from E10.5 to E12.5. Instead, impaired hepatoblast proliferation was observed in sek1(-/-) livers from E10.5, though fetal liver-specific gene expression was normal. The impaired phenotype in sek1(-/-) livers was more severe than in c-jun(-/-) embryos, and sek1(-/-) c-jun(-/-) embryos died more rapidly before E8.5. The hepatoblast proliferation required no hematopoiesis, since liver development was not impaired in AML1(-/-) mice that lack hematopoietic functions. Stimulation of stress-activated protein kinase/c-Jun N-terminal kinase by hepatocyte growth factor was attenuated in sek1(-/-) livers. Thus, SEK1 appears to play a crucial role in hepatoblast proliferation and survival in a manner apparently different from NF-kappaB or c-Jun.

Keywords

Male, MAP Kinase Kinase 4, Gene Expression, Apoptosis, Cell Count, Mice, Antigens, CD, Animals, Molecular Biology, Mice, Knockout, Mitogen-Activated Protein Kinase Kinases, Hepatocyte Growth Factor, JNK Mitogen-Activated Protein Kinases, Antibodies, Monoclonal, Cell Biology, Hematopoiesis, Enzyme Activation, Mice, Inbred C57BL, Liver, Female, Biomarkers, Cell Division, Developmental Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    109
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
109
Top 10%
Top 10%
Top 10%
hybrid